GENERAL REPORT

on the operations
of the

GREAT TRIGONOMETRICAL SURVEY OF INDIA,

j) URING

1871-72,

Prepared for submission to the Government of India.

BY
MAJOR T. G. MONTGOMERIE, R.E., F.R.S., \&C., OFFG. SUPERINTENDENT G. T. SURVEY.

printed at the office of the superintendent c. t. survey.
M. J. OCONNOR.

GENERAL REPORT

ON THE OPERATIONS

OF THE

great trigonometrical survey of india,

D URING

1871-72,

Prepared for submission to the Government of India,

BY
MAJOR T. G. MONTGOMERIE, R.E., F.R.S., \&C., OFFg. SUPERINTENDENT G. T. SURVEY.

PRinted at the office of the superintendent O. t. surver.
M. J. OTCONNOZ.

THE OPERATIONS OF THE

GREAT TRIGONOMETRICAL SURVEY OF INDIA

INV 1871-72.

Summary of the several operations of the present year.
I. Trigonometrical; the Bider Longitudinal Scries, parallel 18°.
II. Trigonometrical; the Λ ssim Valley Triangulation,
III. Trigonometrical; the Northern Scetion of the Bangalor Meridional Series, meridian 78°.
IV. Trigonometrical; the Mangalur Longitudinal Scries, parallel 13°.
V. Geodetic ; the Pendulum Observations.
VI. Trigonometrical; the Biláspur Meridional Series, meridian 82°.
VII. Leveling; Determinations of Altitude by the Spirit Level.
VIII. Topographical; the Survey of Guzrat.
IX. Astronomical; Latitude Observations on the meridian of 75°.
X. Trigonometrical; the Brahmáputra Series, meridian 90°.
XI. Topographical; the Survey of *Kattywar.
XII. Topographical; the IIimalayan Surveys in the districts of *Kumaon and British *Gurhwal.
XIII. Astronomical ; Latitude Observations on the meridian of 78.
XIV. Computations; the Examination, Final Reduction and Publication of the Observations.
XV. Cartography; the Preparation and Publication of various Charts and Maps.
XVI. Gcographical; Explorations of Trans-Himalayan Regions.
$\mathbf{A}_{\text {Ppendices }}$
(2)
(3)
(4)
(5)
(6) $15-a$
(7) 19 -
"
"

$$
\begin{aligned}
& 3-\mathrm{a} \\
& 6-\mathrm{a} \\
& 8-\mathrm{a}
\end{aligned}
$$

$$
\begin{equation*}
21-\mathrm{a} \tag{8}
\end{equation*}
$$

$$
23-a
$$

$$
\begin{equation*}
26-a \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
31-2 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
35-a \tag{11}
\end{equation*}
$$

$$
36-i
$$

$$
\begin{equation*}
41-: \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
51-\mathrm{a} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
57-: \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
68-a \tag{16}
\end{equation*}
$$

1 -b
(1.) The operations of the Great Trigonometrical Survey during 1871-72 out-turn; viz., of Principal Triangles with great theodolites 64 triangles, covering an area of 10,310 square miles with a total direct length of 396 miles, and observations for 3 azimuths of verification; of secondary triangulation with smaller theodolites an area of 13,530 square miles on which the positions of a large number of points were fixed and the heights of 783 were determined; of Topographical Surveying on the scale of two inches to the mile 3,418 square miles, on the one inch to the mile seale 1,279 square miles; of boundary lines and check lines 1,608 miles ; of main lines of double leveling 245 miles, by means of which the heights of 190 points of reference were finally determined ; by Astronomical Latitude observations the Latitudes of 25 points were determined; of geographical explorations 84.4 miles of Route Survey have been reduced, by which the geography of an area of about 7,650 square miles of terra incognita has been unravelled.
 241 miles, clearing of hill tops of forest, cutting of rays \&c., so as to prevent any delay in the steady advance of the operations at the opening of the next field season.
(4.) The amount of data supplied to the Topographical and Revenue branches of the Survey and to the other departments of Government has increased verymuch.
(5.) Considerable progress has been made in preparing the materials for the Publication of Obserrations \&e. 2nd Volume of the "Accoment of the Operations of the Great'Trigonometrical Survey,' and for the publication of the observations; and with the increased means placed last year at the disposal of the Computing Office, steady progress will be made in this important work, which once accomplished will place these very valuable records beyond all accidents and at the same time make them readily accessible for all general purposes.
(6.) The increased means placed at the disposal of the Drawing Office has Triangulation Charts. not only admitted of the publication of nearly all charts of the present year that have been received up to date, but has also enabled this office to publish by ploto-zineography a considerable number of the Triangulation Charts of the corlice operations, of which up to this time nothing had been published, owing to there being no establishment for preparing them. There is now a prospect that the mass of these valuable compilations of condensed data will be forthcoming, in a form readily available, to all who may require to use them.
(7.) The preservation of the records has as usual been carefully attended

Recorcls.

and G. I. Surver at Dehra areall in proper order, and the Officer in charge of the Surveyor General's Office *Calcutta, reports that the duplicates there are also in thorough preservation.
(8.) Steady progress has been made with the reduction and preparation of the Level Charts for Upper India. A Charts of Lerels. large addition has been made to the Tables of Meights with descriptions of the G. 'T. Survey Bench-marks, and the publication of them has been brought u_{l}, to date. The demand for these tables continues to increase.
(9.) The main leveling operations have been continued on the original plan, and arrangements have been made to extend them through the *Bombay PresiLeveling operations. dency and ultimately through *Madras. An index chart showing the proposed sheets of Level Charts in *Bengal and Northern India, has been prepared and circulated to all Departments and Officers likely to require them. The co-operation of all concerned has been asked for; and Offeers will, with the Index, be at once able to see whether they can in any way contribute materials for this work, to which the Government of India attaches so much importance. Materials for a number of new shects have already been collected, and will be gradually made use of as the strength of the Drawing Office is developed; the means of doing this haviug been placed at my disposal.
(10.) The measures prescribed by the Government of India for the proPreserration of Stations. tection of the principal stations of observation have been carefully carried out. During the year 155 stations seattered over 33 districts have been repaired and taken over by the local authoritics. Besides the above, almost all of those previously handed over have been reported on, and where necessary have been repaired, a duty which involves a great deal of labour; as, after the rains, many require petty repairs in order to prevent extensive damage. All the marks of the present year have been handed over to the local officials, with the exception of some in Madras which will be hauded over before the end of this year.
(11.) An abstract of the operations of the various Survey Parties and Offees is given below. Further details will be found in the extracts from the Narrative Reports of the various Executive Officers, jncluding my usual report on the Trans-Himalayan explorations, which have as before been carried out under my personal direction.

T. G. MONTGOMERIE, Mayor, R.E., Offg. Supdt. Great Trigonometrical Survey of India.

> NO. I.-TRIGONOMETRICAL.

TIIE BIDER LONOITUDINAL SERIES, ON PARALLEL 18°.
(12.) The operations of this Scries were continued by Mr. Rossenrode

Prosonnfit,

W. C. Rosacurole, Eisq., Depr. Supdi. 3rl Grade. 11. Herembey Jinq., Surveyor ist Grude.

Mr. E. P. Wrixon, Asst. Sursegor 3rd Grade. who took charge of the party on the 6th November 1871 and marched into the field on the 20th December. The country traversed being very unhealthy, the party could not start carlier; pack-bullocks were the only means available for earriage; and, as the country was throughout both hilly and intricute, marching and arranging for supplies was a matter of very great difficulty, provisions having to be brought from great distances: but few villages oceurring on the line of the series, great delay necessarily occurred in marching from station to station.
(13.) Whilst the atmosplicre continued to be clear great progress mas made ; but the jungle fures commencel in the middle of February, as is usual in such countries, and from that time forward the progress was slow, depending as it did upon occasional showers to make the atmosphere sufficiently clear to enable the observer to see his signals on surounding stations.

Wild animals were very numerous; the tigers were especially troublesome, as in that part of the country they infest the footpaths in order to seize unwary travellers.
(14.) Mr . Rossenrode overcame these difficulties with his usual energy, though he himself and the whole of the camp suffered from repented attacks of fever. Fortunately Mr. Beverley was in camp when Mr. Rossenrode was first attacked with fever, and was able to relieve him from a portion of the work which would inevitably have came to a stand-still had Mr. Rossenrode been alone.

Towards the end of April Mr. Rossenrode had finished the Bider Longitudinal Scries, closing on Kíp and Dhár Hill Stations and effecting a junction with the Coast Series, thus completing a very difficult piece of work which, owing to the extreme unhealthiness of the tract of country traversed by the Series, had been more than usually trying to all engaged on it.
(15.) In addition to the above Mr. Rossearode was able to observe at 4 stations of the Biláspur Meridional Sories, the southern section of which will form the scene of the future operations of this party, starting from the stations Munas and Billi.
(16.) In spite of all the difficulties Mr. Rossemrode made very good progress, the principal triangulation covering an area of 3,011 square miles having made a direct advance of 128 miles. At the same time the approximate serics was corried forward 115 miles more, by means of which arrangenents lave been made for effecting a junction with the northern scetion of the Biláspur Serics.
(17.) The secondary triangulation covers an area of 2,109 square miles in addition to the principal work; more sccondary work and greater detail in that triangulated would have been effected had it not been for the siekness which crippled every one in camp.
(18.) Fortunately during the ensuing season the work will be in the Bastar and Jaipur states where it is belicved the country will improve as the party advances to the north; the country generally rising to a consideralle altitude above the sea, it is hoped that the party will suffer less from sickness.

No. II.-TRIGONOMETRICAL.

TItE ASSAM VALAEY TIEANGULATION.

(19.) This triangulation, under Mr. W. G. Beverley, was continued to the

Perionsil.
W. G. Berrelfy, Eat. Asst Supitt. Ind Grate. Mr. G. A. llaria, Assl. Surwor lat (irmle. .. W. I. Osulliran, dita lat firale. East up the Assim ralley. Owing to the Lushai experlition being in progress, the civil authorities had come to the conclusion that the wild tribes on the low hills adjoining the valley would he hostile, and the district officers had eonseduently been directed to areet stodkades to prevent the tribes from entering the Assim valle. y . 'This becing the state of allairs it was quite impossible that, the triangulation coudd be carried over even the outermost portion of the hills, without a very much stronger guard than the civil authorities could supply at such a time. The ofliere in chare was conserfuently rehuctantly compelled to alfer all his arrangements in order to carry the Series throush the plains. This in itself was the soure of great delay, which was much enhaneed by the very diffi-
cult nature of the country which, where not covered with forest, is clothed with gigantic tropical grass and reeds, the latter so thick that in clearing a ray they had to be cut one by onc as if they were small trees.
(20.) The district officers did not give any assistance, and consequently the party had to struggle against a dearth of local labour, though the villages met with would have been able to supply all that was required without any inconvenience.
(21.) After a careful reconnoissance of the ground, Mr. Beverley came to the conclusion that the only chance of progressing would be got by carrying the Scries along the great river, wherely much heavy jungle cutting would be avoided on the one hand, whilst on the other he would escape the excessive demands for compensation which Tea planters and other private owners would have exacted had he kept clear of the river; previous experience had proved that such owners have exaggerated ideas as to the value of their property.
(22.) The heavy smole from the jungle fires was as troublesome as in previous seasons; and after the middle of January none of the distant peaks were visible even after a sharp shower of rain.
(23.) With a view to assist the party in overeoming the various difficulties that it had to encounter, I restricted the Bráhmáputra Scries operations as much as possible, transferring Mr. Larris of that Series temporarily, and devoting all spare men, elephants and funds that were avalable in order to carry on the work of the Assám 'I'riangulation.
(24.) Though so much delayed by having to change all the arrangements of the Scries, owing to the impossibility of making use of the hills, Mr. Beverley was able to complete 420 square miles of principal triangulation ly a direct advance of 40 miles, the secondary triangulation covering an area of 2,300 square miles.
(25.) One important adrantage has been secured by adhering to the course of the river, as Mr. beverley has thereby been able to fix four (4) of the Revenue Survey Stations, which was satisfactorily accomplished by means of carcful observations to heliotropes. This will mene the wants of the Surveyor General who was mxious to have some of the Revenue Surrey points in Assim fixed with a view to compiling the Revenue Survey work, which can be now carried out.
(26.) The health of the party was fair and it suffered less from insects than during the previous scason.
(27.) Arrangements have been made to strengthen the Assím party still further, and as the Scries has now reached the Silsagar district, one of the healthiest in Upper Assím, it is hoped that the triangulation will progress rapidly during the ensuing seasons.

NO. III.-IRIGONOMETRICAL.

NORTHEIRN SECTION OF THE BANGALOR MLILDIONAL SERIES.
(28.) This party under Lieutenant Rogers took the feld carly in November, and complete armanements having beon made

Personntia.

Limil. M. W. Rugra, R.E., Oflor. Jt jonty Sipde. ard Grade.
Mr. W. C. Price, Assistand Surveror 2nd Grade.

	louil	dii	and
	c. 1'. Torrens	ditlo	H1/ (a)
"	W. Ohlhnm,	clito	4 th ${ }^{\text {a }}$

in the previous season he was able to carry on the olsucrations without intermission until a junction was effected with Sir Andrew Waugh's Southern section of the Great Are whiche extends North to Dehra Dun. This junction was affeeted by the 1st of March.

Lieutenant Rogers then took up a Minor Series by means of which he connected ITaidanabad and Sikandmad with the Principal Series. He suceecled in fixing both of these important places.
(20.) The country traversed by the Series is hilly and very rocky; 20 miles north of the Kistna a range of hills oceurs beyond which the country has a mean eleration of 1,800 fect, and towards Bider the whole country rises again and forms a platean with an cleration of about 2,000 fect. The greater part of the country is without roads, and the villages appear to be in a state of decay owing, it is said, to the failure of the rains for some years past, but more probably to the conditions upon which the land has hitherto been held-a state of affairs which the Nizim's Minister has fortunately already begun to improve and as the new Haidarabard State Railway passes through it, there is now some hope that this hitherto but little known portion of the peninsula will rapidly advance in civilization. Considerable deliy was caused by thick jungle in some portions, and from the ground being generally all at nearly the same elevation. In spite of this Lieutenant Rugers made very good progress, completing the Series by a direct adrance of 86 miles with 16 principal stations, covering an area of 3,009 square miles. The sccondary triangulation covers a further area of 2,136 square miles, a large amount of work which is the more satisfactory as all the points, both those risited and intersected, have had their heights as well as their positions determined.
(30.) In ardition to the above Licutenant Rogers was able to determine by means of Ancroid barometers the heights of a large number of places visited by the party in marching from station to station. These heights were taken by simultaneous olservations with two Ancroids from Bangalor to Gutti, Lieutenant Rogers marching in adrance with one ancroid and an assistant with another aneroid marching one stage behind him, whereby daily sumultaneous differences were detamined between the ends of cach stage, the aneroid barometers being compared evory evening. This is the only system by means of which it is likely that really reliable beights can be obtained from these instruments.

The heights determined are published in the Appendix, and form a valuable addition to the geography of this portion of the country which has hitherto been but little known.
(31.) The assistants suffered from ill health; smallpox broke out in one of the detached camps, and I much regret to record that the wife of one assistant fell a victim to it.

NO. IV-.TRIGONOMETRTCAL.

mangalur longitiddinal serifis, patatilel 13°.

(32.) The Madras Party under Major Branfill, though still suffering from the effects of the previous unhealthy season,

Personyfl.
Maine B. R. Branfill, Depy. Suprlt. End Frade.
 Mr. J. W. Mildhell, Ass. Simeyor 1 si trade. , O. V. Nomis, dito 2 mel chate. .. C. D. lollow. ditio 3red (irade. ". IE. W. Lasscror dito dth Grade. took the ficld early in November. 'The operations were pushed on with great energy and though there were delays, arising from the approximate series requiring alteration, the very difficult nature of the country and the early setting in of the haze, yet in spite of every thing, very good progress was made. Fifteen principal stations were olserved from and the Surios was advanced over a divect distance of more than 100 miles. The principal triangulation covering an area of 3,239 square miles and the secondary triangulation a further area of 2,053 square miles. The Sories was thus carried ower the Western Ghaíts, a most difficult range, being, as it is, rurged and in parts so densely covered with forest and jungle.
(83). The Tirlal operations at Tutukuli (Tutikorin) were completed in a rery satisfactory manner. An attempt was made to take another set of Tidal olvervations at Mangalur, hut although Major Branfill devoted a great deal of labrer and tried every expedient, he was unable to make any permanent arrangemunts owing to the nature of the coast which is very exposed; during the
ensuing season a more protected site will be searched for.
(34.) The party suffered severely from fever more especially towards the end of the season.
(35.) From the computations of the previous season's work, it appears that the Ancimudi Peak in the Aneimallci Range has an altitude of 8,837 feet above the Sea, nearly 200 feet higher than the Dodabetta Peak in the Nílgiri Hills, which has hitherto been supposed to be the highest peak in Southern India. In determining the heights of the peaks in the Ancimallei Range a very valuable addition has been made to the geography of India, large portions of that part having hitherto beea all but torva incognita. A further important addition has moreover been made in the same quarter by means of a Secondary Series extending about 120 miles along the Coast to the south of Mangalur, thus bridging the gap left at this place in Colond Lambton's triangulation.
(36.) So little being known as to the general levels of the country, arrangements were made for taking a large number of aneroid observations at as many places as possible. Leaving Bangalur the party marched in two portions, for the sake of observing Barometric differences between each stage by means of corresponding simultaneous obscrvations with two pairs of aucroids, the result of which proved highly satisfactory, the closing error being only 7 fect. Barometric observations were also taken daily throughout the season, at 10 A.m. aud 4 p.m., by the main party and by two of the Assistants who were working separately: a system which is likely to lead to good results, more especially when any one of the observers happens to be at a point whose height has been trigonometrically determined, as in that case great reliance can be placed on the heights derived from the observations made by the other observers.
(37.) The heights determined from the above will be published as soon as Major Branfill is able to compute them.

NO. V.-GEODETIC.

THE PENDULUM OBSERVATIONS.

(38.) On the death of Captain Basevi, R.E., the Pendulum party mas put

Pensonnel.

J. B. N. Mennesaer, Tsq., Dy. Supdt. 1st Crarle. Captain W. J. Meuviside, K.E., Ollg. Dy. Supde. Ard Grido.
Mr. J. W. Muedongnll, Asst. Surreyor 2nd Grade. papers of Captain Basevi, examining the instruments and carefully packing them so that they might not suffer in any way from damp, \&e.
(39.) It was necessary that every record, mhich could throw any light on the smallest detail of Captain Basevi's valuable operations, should be preserved, not only as a guide for his successor but also that nono of his hard carned results should be lost to posterity: my hest thanks are due to Mr. Hennessey by whom this difficult task was most skilfully and satisfactorily carried out. When this most urgent work was accomplished the Assistant with the parly under Mr. IIennessey's instructions, took up the reduction of some of the last pendulum observations.
(40.) Subsequently Captain Weaviside was given the charge of the party which he joined on the 20 th of April. During the reeess he has been diligently occupied in arranging the papers under separate headings, and in making himself aequainted with the methods followed ly Captain baseri in olserving and computing out the results. Captain Heaviside has also practised as much as possible
in taking observations and has already attained sufficient knowledge of the work to enable him to commence a regular set of Pendulum observations: in this he has throughout been greatly assisted by Mr. Hennessey. Judging from the progress that Captain Heaviside has made I feel every confidence that ho will be successful in taking the farther observations that are required to complete Captain Basevi's work.

NO. VI.-TRIGONOMETRICAL.

BILASPUR MERIDIONAL SERIES.

(41.) This series was extended southmards for a distance of 42 miles by

Personnel.
II. Keclnn, Esqı, Offg. Depg. Supdt. 2nd Grade.

Mr. L. H. Churke, Surreyor 3rd Grade.
, H. E. T. Kicelun, Surresor 3rl Grade.
" H. Heuly, Assistant Surreyor 41I Grade. means of one pentagon and two quadrilaterals with one set of Azimuth observations taken at Pathaidi. But little secondary triangulation was done owing partly to the almost total absence of all permanent buildings ; the inhabitants in this wild, jungle country being chiefly aborigines living in the rudest huts. Some signs of a more civilized people were seen in the shape of ruined temples \&c. supposed to be Buddhist, most of them hidlden in dense forest, and none of them being sufficiently conspicuous to be seen from the Survey Stations. The position of the Civil Station of Ráipur was fixed.
(42.) The Approximate scries was advanced about 60 miles, and a junction was effected with the southern section.
(43.) The party generally suffered a good deal from malarious fever.

NO. VII-LEVELING OPERATIONS.

determinations of altitude by the spirit level.

(44.) The leveling operations were resumed from the last point laid down ab

Pensonnel.

Cnplain T. T. Carter, R. E., Dy. Supdt. 2nd Grade. Mr. A. W. Dounelly, Survegur 2ud Crade. the end of the previous season, viz. from Parsoni; and the main linewas carried from thence via Síhilganj (Náthpur) to Purniah with a branch line to the small Civil Station of Madahpur, and another branch to Kotgauwah and thence by two lines to the G. T. S. marks of Dighi and Rámnagar.
(45.) A number of permanent points were established near Purniah, at the request of the Collector, in order to serve as checks on proposed leveling operations that are to be carried out by the monicipal authorities. A chart showing the points fixed and a memorandum as to their heights was given to the Collector. From Purniah the main line was carricd down to Karagolaghat, and thence across the * Ganges to the G. T. Survey Bench-mark at the Pirpanti Railway Station, fixed in 186 by the main line which passes on to *Calcutta. The junction thus eflected shows a total difference of 0.78 of a foot.
(40.) After completing the above, the main line was carried on from Purniah to the G. T. Survey towers at Sonákhoda and Ramganj with which a connection was effected by the end of the field season; this is a most important determination as the two towers mark the ends of one of the initial bases of the Trigonometrical Survey.
(47.) Considerable delay was caused by the mant of roads, in one portion the line having to be carried through high grass. There was also a diffeculty as to the crossing of the Kosi river and still more as to the Ganges, which was so broad flat special arrangements had to be made before the leveling staves could be read off.
(18.) The out-turn of work has altogether been very good, embracing as it does 210 miles of double leveling, during which 7 trigonometrical stations were connected with and 16 bench-marks were laid down with a very much larger proportion of marks on permanent points than usual. I had specially directed Captain Carter to fix more bench-marks, and he has very satisfactorily carried out my instructions. The bench-marks and permanent points are alvays most valuable as points of reference and cheeks for local works such as canals, drainage \&c., and in the last season's work done by his predecessor there were some unnecessarily large gaps without auy permanent mark of the main line of levels.
(49.) Mr. Donnelly held temporary charge of the party until Captain Carter's return from furlough. The arrangements made by Mr. Donnelly were very satisfactory and the work done by him has tumed out very good.
(50.) The health of the party was on the whole good.

No. VIII.-TOPOGRAPHICAL.

THE SURVEY OF GUZRAT.
(51.) Major Haig R.E., took over charge of this party on the 23 rd September and started for the field on the 23rd of

Persomide.
Mnjor C. T. Maig, R.E., Offr. Dy. Supdt. Ist Grade. Cuptain A. Pullu, S.C. " 3rd "
Mr. A. D'Souzn, Surveyor Bred Grade.
" A. Christie, Asst. Nurveror lst Grade
" C. M. Med'Fee, Asst. Surveyor 2nd Grade.
" E. J. Contor; " \quad " \quad,
" J. Ilickio " \quad " 3ril "
" G. D. Cusson, ", " Brd " October; operations commencing near Súrat as soon as arrangements were completed.
(52.) The topographical operations were diligently pushed on; and the area mapped, viz., 1382 square miles, shows a marked incrase on that of the previous scason. Lvery endeavour was made to execute a large area of triangulation for the ensuing season as well as to supply extra points for use during the current season. In all 1036 square miles were triangulated including the Minor series along the River Mahi. The Mahi triangulation hat previously progressed very slowly owing to the dense forest and jungle on both banks, which made it very diffieult to get long sides; but by adopting smallex sides, and making as much use as possible of the open space of the river itself, the work was brouglit to a satisfactory conclusion by the end of June. A number of stations of the Súrat eity survey were fixed by the triangulation; and Major Hair consequently anticipates that he will be able to prepare a very accurate map of Súrat without much extra labour.
(53.) Many portions of the country being thickly wooded, I directed that a larger amount of traversing should be carried out in such places, the main traverses to start from and close on trigomometrical stations. The necessity for alopting more traversing was crident, hecause a complete network of triangulation would be very expensive, and even if executed could never supply so mauy points as a number of main and minor lines of traverses which in their progress would besides determine numerous topographical features which could not be got from a triangulation.
(51.) Major Haig reports favombly of his Assistants who have now all had a good share of experience, and with strict attention to cach particular opera-
tion I have no doubt but that a full amount of first-class work will be turned out luring ensuing seasons. The training of the native Sub-Surveyors has also received lue attention and several of them have already completed a fair share of work.
(55.) Major Haig has shown great tact in dealing with the Baroda Darbar, and by conciliation has prevented all obstruction in the progress of the Survey which is a matter of congratulation, as at one time the opposition of the Native officials seemed likely to seriously retard the operations.
(56.) Altogether, considering that the party is a new one, very good progress has been made, and I feel sure, if it is possible, the general out-turn will bo again increased during the ensuing field soason, though the party has to work in a very difficult flat country, in parts densely wooded.
(57.) The health of the party has been fairly good, only 2 or 3 members suffering from fever \&c., and as Major Haig is well acquainted with the climate of the country I hope the health of the party will be as good in future scasons.

> No. IX.-ASTRONOMICAL.

LATITUDE OBSERVATIONS ON THE MERIDIAN OF 75°.

(58.) This party resumed operations to the south of Kem II. S. in Lat. 18° Captain W. m. Canpbell, r. e., Onfig. Dy. Suldt. 11'. The party started on the 9th of Novem2nd Grade.
Mr. A. H. Bryson, \mathbf{A} st. Surreyor 41 ll Cruale. ber but observations were not commenced till about 20 th Docember; from the latter date to the 17 th of May 7 stations had been selected and observed from, including a second set of observations at one of them, the party during this period having travelled 450 miles by land and 100 by sea.
(59.) The selection of the stations was satisfactorily made, and on the whole they are likely to be as free from disturbance of the plumb line as is possible in such a country.
(60.) The observations were taken with the new Zenith Sector which has worked very satisfactorily; though there is, as in its sister instrument, a tendency to instability shown by gradual change of the zero of levels and microseopes and level of transit axis, a tendency which it is hoped means will be devised to correct: for although it is not likily to adfect the olservations, as the time occupied in taking a double observation is but 5 minutes, yet it would be as well to perfect the instrument in this respect.
(61.) The eapability which this instrument has of changing the zero on its limb in a great measure removed the neessity for taking exact pairs of north and south Stars, as a fresh set of graduations is used for cevery observation whether of the same Star or not. I aceordingly sanctioned Captain Camplells dispensing with Stars in pairs, though he was directed to use an equal number of Stars north and south of the Zenith and to endeavour to maintain an equality between the mean zenith distance north and sonth, making it his first object to use Stars depending on the greatest number of observations.
(02.) Hitherto the labor of reversing the Zenith Sectors bodity, has provented the observers from trying the experiment as it involvel taking the instrument entirely to pieces; but Captain Ilersehel Lh. E., devised the means of revolving it, all stambine, as deseribed in his wome and fomed that it had such a decided effeet on the results that it was evidently essential and Captain Campbell accordingly adopted the plin as soon as it was commmicated to him.
(63.) The plan of changing the order of position (East and West) of observation with alternate stars, was found to be preferalle to doing the same on alternate nights. Throughout the season the Zenith Scetor was carried on spring carts constructed by aptain Coupbell for that purpose, whereby a considerable saving has been made in the pay of bearers, and not a little delay avoided, as bearers are always difficult to get and keep. The carts lave answered their purpose admirably; the instrument having passed safely over some very bad, rough tracks not worthy the name of road.
(64.) Altogether the progress of the party and the use made of the instru. ment has been very satisfactory.

NO. X.-TRIGONOMETRICAL.

TIIE BRAHMAPUTRA SERIES.

(65.) The field operations of this party under Mr. Beverley were entirely

Personnel.
W. G. Bererley, Esq., Assist. Supdt. 2nd Grade. Mr. С. J. Neurille, surveror 2md Grade. " G. A. Hurrie, Assist. Survegor 1st Grade. confined to the approximate operations, as much of the strength of the party as possible being devoted to the Assám- triangulation. Five rays were finally cleared; three towers werc completed, and a commencement was made with a minor triangulation for the purpose of fixing the station of Maimansinh.
(66.) As much progress has been made as the means available admitted of, and the whole of the approximate series has been completed with the exception of the building of 4 towers and 5 platform stations.
(67.) More than sufficient stations have been prepared for the ensuing season's operations, and the remainder, noted above, can be built while those to the south are being observed from.
(68.) About 20 per cent of the establishment were gencrally ill with ferer.

NO. XI.-TOPOGRAPHICAL.

the survey of kattywar.

(69.) The progress made by this party under Captain Trotter has continued to be very good, though the south portion

Perisonnel.
Coptain H. Trotter, R.E., Depf. Supdt. 3rd Grado. Licut, A. W. Daird Aast.
Mr. J. MrGill, Assistant Supdt. " 2nd ",
"F. Tyull, Surveyor 4th "
" J. Wood, " 4th
" N. C. Gynne," Δ esistant Surrejor 2nd
"T. Remolell, " " and
"J. N. Wyalt, ", " \quad nid ", of the ground surveyed topographically was mostly flat, while in that to the uorth there was a large amount of detail. Had there not being so much detail in the latter, the party might have turued out even a larger area thin it has. It is satisfactory to be able to report that the tailluka boundaries of the ground surveyed were found to have been properly demarcated by the time the party took the find. This is a point which this Department has had the greatest difficulty in getting earried out, not only in Kattywar but in all parts of India. The Civil, Forest Departments \&e., ask to have boundaries laid down, but forget that it is quite impossible for this Department to do anything until the boundaries are demareated in some permanent
manner, as by pillars, \&e. The consequence of neglecting this essential preliminary, is endless trouble and expense: and, in the Survey reported on, it was necessary in previous seasons to send in maps disfigured by undemarcated boundaries.
(70.) The necessity for new maps of Kattywar has been fully proved, and in fact become even more obvious than it was when the work first commenced. On comparing the old maps with the new corrected ones, differences of 1 mile in 5 and even of 1 mile in less distances were found to exist; the lines of watershed and drainage were also found to be entirely incorrect, the old maps being positively misleading. For instance an cxamination of our new original maps induced the the Agent of the Bombay, Baroda and C. I. Railway to lay out for detail survey an entirely different line from what he originally intended when he had the old maps only to judge from. Colonel Auldison, the Political Agent of Kattywar, is very urgent to get the maps of the country round Raijkot. It is gratifying to learn from these and many other instances that the Surveys of Kattywar and Guzrát are fully appreciated.
(71.) The out-turn of the field season has been 2,036 square miles on the scale of 2 inches to the mile; 1,910 square miles of country have also been triangulated preparatory to being surveyed topographically during the ensuing season; traverses amounting to 779 miles were carried along talluka boundaries with theodolite and chain, and 156 miles more were executed for the purpose of testing the accuracy of the detail survey.
(72.) The season was a healthy one in Kattywar and there was consequently comparatively little sickness in the field.
(73.) Captain Trotter was fortumate enough to shoot four of the lions that haunt the country: judging from the ditails given in the Appendix they appear to be formidable animals, though not ncarly so troublesome to men as tigers are.
(74.) The material collected for final maps will enable the party to prepare a further instalment of them on the scale of 4 miles to the inch, for incorporation in the sheets of the Atlas of India.

The average number of plane table points fixed in each square mile is a little over ten (10).
(75.) In the area triangulated for next season a point has been fixed in every $2 \frac{1}{2}$ square miles, and a height in every $8 \frac{1}{2}$ square miles, which is ample to secure all desirable accuracy in the detail and at the same time to illustrate the differences of level.

NO. XII.-TOPOGRAPDICAL.

himalayan surveis in kumaon and gerfiwal.

(76.) During the recess this party was chiefly employed on the fair maps of the Kosi Valley Survey, which comprise 8 large shaded sheets and the sime number of skeleton sheets without shading.
(77.) A second edition of the Guide

Licut. J. Mill, R.E., Omiz, Depr. Suprit, Srid Grade. M II. M. Chambers. IR ES., Asst. Sipelt. 2mal Grade.
 , J. Pיoting ditio 2 midrade
"W. Toidd, ditto 3rd Grade (on Furlough).
". J. Low, dito Brd Crime
" I. Ponork, Agat. Surreyor Int Gradr.
$"$ H. Thide, ditto 2nd (trude.
$"$ T. Kinner, dilto 3 ral Grade.
"E. F. Litelifield, ditio 4th Crude. Map for Masíri and Landaur was also prepared containing all the changes that have taken place in the Sanatarium since the original maps were prepared. A table of distances, an index to all the houses \&ce, and a number of new heights were added to the map, making this new edition very complete.
(78.) The drawing of the Kosi Valley Maps was necessarily laborious, and several of the Surveyors had to be kept in later than usual, and the party was in consequence not able to finish so large an area as it would have done if a complete season had been available.
(79.) The field work began with an extension of the triangulation of the Mána and Níti valleys that drain into the Alaknanda branch of the *Ganges, a most difficult picce of work, as all the stations of observation were necessarily above the limit of forest, and some were 17,000 feet above the sea. The triangulation in the Mrima valley was extended from the Badrínítl Temple to the village of Glastoli, and the triangulation of the Níti valley was carried up to the Níti Pass on the great Limalayan watershed.
(80.) Three stations were established close to the Níti Pass from which a good view of the Trans-Himalayan range, generally known as the Kailás snowy range, was obtained. In this range 8 lofty peaks were satisfactorily fixed and their heights were also determined; one of these peaks is the sacred Kailás Parbat which has various appellations such as Gaug-ri, Garingboche, \&c. This celebrated peak had been formerly fixed ly Licutemant (now General) R. Strachey, R.E. from similar points near the Níti Pass, and the present operations by which it has been directly connected with the triangulation of India, prove that his results were nearly correct; the height now estahlished being 22,028 feet, just 28 feet in excess of Gencral Strachey's, and the position given by him requiring no material alteration. The determination of these 8 Trans-Himalayan peaks will be excessively useful in testing and compiling the work of my explorers, who have at various times passed near them and have taken numerous bearings to the most conspicuous, in some cases from points very far to the north and east, beyond the Kailás range where I was naturally anxious to have some check upon their longitudes.
(81.) I have previously dwelt on the difficulties which surveging in the upper valleys of the Himalayas involves; they were as formidable as usual in the present instance, and the success of the Surveyors in overcoming them was not a little due to the cordial assistance rendered to them by Captain Garstin who has the Civil charge of this very wild and elevated tract of British Territory.
(82.) The field work of the scason comprised the triangulation of the country east of Naini-Tal, including the hills, as well as the flat portion at their foot known as the Blábar, up to the Nepal Fronticr on the Sardah river. The Topographical work covers a number of mountainous districts north and east of Almorah up to the Nepal Frontier, and also a part of the Bhábar to the south of Naini-Tal. A small portion of very intricato, hilly ground opposite Hardwar was triangulated and sketched. This tract had not hitherto been surveyed as it was originally beyond the boundary of Gurhwal, with which it has subsequently been incorporatel. A map of it was required in order to prevent there being a gap between the survey of the hills and that of the plains.
(83.) The triangulation covers an area of 1,962 square miles with a trigonometrical point fixed in every four (t) square miles, and one height in every $\bar{b}^{\frac{1}{2}}$ square miles, a very liberal proportion for the seale of survey.
(81.) The toposraphical surveving eovers an area of 1,279 square miles including a very large amount of intricate, forest-clad mountains with only onetenth part actially under cultivation. In addition to this 93 square miles of Nepal were sketched from stations in Kumaon.
(55.) The topographical work was examined and tested in various parts and was found to be accurately delineated and in many cases the rendering is most artistic.
(80.) Four large shects of the fair maps lhave been prepared during the
recess and will be published by the end of the year. They are capital specimens of drawing both as regards the hill shading and general exccution; the style of the work has undoubtedly been much improved by the experience gained on the large scale surveys of Rínikhet and of the Kosi Valley.
(87.) The party has altogether made very good progress and Lieutenant Hill has fully provided for the ensuing season, there being, with previous years triangulation, ample points for all the topographical work that can be taken up next season.
(88.) The health of the party was good during the field season, but after its return to quarters Lieutenant H. M. Chambers, R.E., died at Masúri; he was a most promising young officer and his untimely death was much regretted by all who knew him.

NO. XIII.-ASTRONOMICAL.

Latitude observations on tie meridian of 78°.

(89.) Captain Herschel after the recess was employed in taking observations connected with the Solar Eelipse of 11-12 December 1871, and his Latitude observations were resumed as soon as he could get

Capt. J. Herachel, R.E.. OTN. Depr. Suphlt. 1st Grade. Mr. G. Beleham, Asst. Surreyor 1st Griale. away from the work connected with the eclipse observations. Though delayed by this extra duty Captain Herschel was able, by extreme connomy of the time available, and by staying out late in intense heat, to complete all the olservations that were required up to Elichpur, his most northerly station being in Lat. $20^{\circ} 44^{\prime}$. This involved a direct adrance of bat miles, which was largely exceeded by wanderings in the Haidarabad territories where roads are unknown, the country traversed being in most places unutterally stony and unsuited for wheeled carts of any description. In spite of the great distances to be traversed and the small time available, Latitude observations were taken at 18 stations, forming four groups as detailed in Appendix. These groups are at intervals in latitude of from about 1° to 2°, but in several instances observations at intermediate points are available from Colonel Lambton's work, some of which Captain Merschel has reduced and las reason to believe that, apart from constant errors, they are good enough to be included. The Latitude obscrvations for the Are from Cape *Comorin in lat. $8^{\circ} 13^{\prime}$ to Kaliánpur lat. $21^{\circ} 7^{\prime}$ may be considered complete, as all that is now necessary is to get the grodetic values of the stations of the last two groups which will be completed early in the next field season.
(90.) The principal stations at 3 of the new groups, were also stations of the late Captain Basevi for his Pendulum observations for the determination of the local foree of gravity.
(91.) As stated in Captain Herschel's report for last year, he had reason to think that a peculiar nource of emor existed in the levels of the Zenith Sector; being unable to account for it, he devised a methorl for reversing the instrument bodily. This was ingeniously effected by introducing a small metal button under the centre of the instrument after prizing the later up on one side with a lever. On lowering the instrument on the button a condition of unstable equilibrium was obtained in which this heavy iustrument could be turned round, so to speak with a finger, with perfect safety, the feet just grazing the stone slab on which the instrument stands-a method which proved very satisfactory and was as before stated subsequently put into practice by Captain Campleell with the other sister Zenith Sector. At first Captain Herschel thought that this reversal would eliminato
a constant error, which was apparent in the first case, but subsequent experience shows that the effect is barely traceable, and there now seems to be little doubt but that the errors detected are due to the position of the bubbles in the levels. These errors on the whole are insufficient to justify any alteration of previous results; but the system of reversal will be continued, and in order to nutralize the irregularity in the levels, their readings will be purposely and frequently altered during the course of the work, and a re-adjustment of level will be made, say every hour, as a part of the routine.
(92.) The results as far as computed, give farther evidence as to the great uncertainty of local attraction. Between the Honur group in lat. $14^{\circ} 544^{\prime}$ and the Darúr group in lat. $16^{\circ} 12^{\prime}$, being a difference of only $1^{\circ} 18^{\prime}$ in latitude and 35^{\prime} in longitude, i.e., 98 miles, the change in the local disturbance is no less than 8 seconds; and, as the crrors of measurement cannot possibly account for more than a small fraction of this amount, there seems no doubt but that the attraction is disturbed in a very irregular way. The Monír and Darír groups appeared to be both as free from apparent alonormal causes for incegularity of attraction as they well could be, and yet the change in clisturbance shows the largest deflection that has hitherto been observed in India, which may not be directly attributed to mountain masses.
(93.) The amount of work done has been very large and is highly creditable to Captain Herschel. As a rule from 30 to $3 \dot{5}$ stars were observed each night; and, bearing in mind that at every station and inded every night almost the meridional direction had to be sought out by transits, and adjustments had to be repeated, before the regular work was commenced, it is easy to understand how harassing the work must have been with the temperature at from 98° to 105°. Notwithstanding the hard work and the exposure towards the end of the field season the health of the party was on the whole very good.
(94.) Captain IIerselicl's detailed report contains various other particulars that will be interesting to all who study questions into which the variations of density in the crust of the carth enter.

NO. XIV
 the computing office.

(95.) In the computing office Mr. Inennessey has continued the calcula-

Pensonnet.
J. B. N. Mennesacy, Esq, 1)epy. Supit 1st: Grade. W. H. Cole, I:q., M. A., Asst. Supilt. 1st Grude.

Compning Dranch.

Mr. C. Wood, Surveyor 3rll Grade.
1I. W. I'eriners, Asst. Survejor 1st Grade. Búlua Gunga Pershad.
, Culy Mohm Ohose.
" Kally Coomur and 9 olloer native computors.

Printiny ofice.

Mr. M. J. O'Connor.
tions of the Sironj-Chach Quadrilateral so as to complete the triangulation; this involved a large amount of computation, chiefly in connection with the auxiliary principal stations, no less than 265 triangles entering, (in groups of 2 and upwards), into 110 figures were made consistent by the method of least squares. So that the whole mass of this extensive work, which forms the basis of the Geodesy and Geography of northern India, has now been redued by the most aceurate of modern processes. Besides the above special work a very large amome of ordinary computations were performed as detailed in para. 3 of Mr. Hennessey's Report.
(96.) A gencral plan for reducing the scomdary triangulation has been prepared in accordance with what has been done for the principal work in the Sironj-Chach Quadrilateral; care has been taken to elaborate a scheme which avoids redundant calculations while securins the full utility of the sccondary work, which is beoming more valuable every year for new large seale survers required for railways, roads, camals \&e. Experiments have been made with the new plan and it promises to do what is required with a minimum amount of labour.
(97.) A large amount of the computed results have been compiled for the press, sufficient to corer about wo quarto pages. In addition a great quantity of data has been compiled and examined for the numerical charts, of which no less than 30 large sherts were prepared, involving months of laborious work which requires the excrcise of the greatest vigilance in order to prevent errors.
(98.) The measures for the protection of stations have been steadily persevered with, a reference to Mr. Hemnessey's report shows what a large amount of work this involves.
(99.) Besides the above regular work of the office, various other important duties have been disciarged by Mr. IIennessey, amongst which may be mentioned the preparation for the press of 1,143 pages of printed matter, mostly quarto size, including 517 pages for the new volumes of the "Account of the Great Trigonometrical Survey"; also the supply of special data to 23 officers.
(100.) Mr. Hennessey also superintended the Photo-zincographic and Drawing branches, the operations of which are detailed below.

I have elsewhere referred to the valuable services of Mr . Hennessey with the Pendulum Party.
(101.) Mr. Hennessey was selected to assist in the observations of the Tistal Eelipse of the sun which occurred on the 11-12th December 1871. There he ren-
Total Eulipse of the Sun, 11-12th December 1871. dered very efficient aid and was more especially successful in photographing the eclipse, securing no less than 6 excellent photographs during totality. 'These photographs have met with deserved commendation from competent authorities in England, and it is not too much to say that they are on the whole superior to any that have hitherto been produced in any part of the world. This was due to 'Mr. Mennessey's skilful armanements and to the judgment he excreised in varying his programe on finding what a peculiar state of atmosphere be had to deal with, mist of a varying density having unfortunately prevailed during the whole cclipse.
(102.) Mr. Mennesser gives various interesting extracts from his own report as to the eclipse and also sone from Colond Tennant's report as the observations generally.
(103.) Altogather Mr. Mennessey has been very filly employed and very great credit is due to him for the efficiency to which the various branches under his orders have attained owing to his skilful and unwearied supervision in all matters.
(104.) Mr. Mennessey has been ally sceonded by Mr. W. II. Cole, M.A. who is now competent to assist in all matters, and also to originate valuable projects for the prosecution of the work, whereby his assistance has become doubly valuable.

NO. XV.

CARTOGRAPIY, PHOTO.ZINCOGRAPFIY \&e.,

(105.) The Drawing Office has, as before, been chicfly occupied with the

Draving Office.
Mr. G. W. F. Alkinson. Surregor 41/1 Grade. 6 Nutive Draftamen and 23 Apprentices.

Photo-zincographic Offoe,
Mr. C. G. Ollenbach.
" C. Djrod.
preliminary charts of triangulation and the charts of levels, the following charts having been prepared for photo-zincography, viz., 23 preliminary clarts of triangulation, of which the majority have already been published, besides variousothertriangulation charts which have been prepared in manuscript only for
the use of gorernment officials; 4 shects of charts of levels have been completed and many more are in course of preparation. An index to the level sheets has also been published, so that officials may at once be able to see whether the materials in their offices can in any way assist the completion of these most usoful charts. Numerous maps and reductions have been prepared for incorporation with the level sheets and various others for the use of the lrrigation Department.
(10\%.) A map of the country round Delli mas compiled with various plans for the use of the Camp of Excreise during 1871-72. Experiments were marle as to the most convenient form for issuing such maps for use with troops in the field; some eopies were printed on water-proof india rubber cloth, on white cloth, and on several kinds of paper, printing being applied on both sides. These were put up in various forms and the conclusion arrived at was that a roll with a couple of clasties attached was the most handy, as it could be carried in the holster. The white cloth promises to be the most serviceable for although the maps on ludia rubber cane out beantifully and were all but indestructible, they were too heavy for gencral use, and it is probable that they might be unpleasant to handle during great heat. As to paper, some on ordinary thick and thin drawing paper will alvays be required for office use, with an army, but the maps on bank-post paper were found to be very clear and to stand a large amount of rough handling, though of such nice light material, and on the whole this is probably the most serviccable paper that has hitherto been tried : some farther experiments are being made and I hope that an indigenous material will be found suitable. The results of the experiment will be published herealter. The printing on both sides of the eloth or paper answered very well even with the thinnest, viz., the bauk-post, the maps being as elear as could be wished. Experiments were, howerer, made by printing the subordinate map at the back in blue or. brown, and I think some small advantage was thereby gained on the thinner material. When the portability of the maps is so desiable as during a campaign the advantage of using both sides of the material is obvious and I think should be adopted in future. It may be noted here that eloth maps are pertaps better adnpted for use on horseback, many horses ohjeeting to the rustling of paper. Probably a few copies on water-proof cloth would be found uscful for an experlition during the rains when exry other material is apt to be damaged by the damp. This map was drawn and printed in little more than six weeks, and I ne ed hardly point out how adrantageous it is to be able to print a map so quickly; a similar map during the Mutiny would have beren of immense adrantage but this office had not then grot the means of doing anything of the kind.
(107.) Three shects of the Maps of Routes in northern India were comploted and the 44 h was conmenced; this compilation has involved a very greatamount Routo Mnps. etion so as to include every thine uscful that of close examination and carcful solection so as to include cyery thing useful that the seale would admit of without overerowding. The maps includi my former Kashomir Route Map, with ennsidmable extensions and additions on both sides of the frontier. The additions in *Kuman and *Gurbwal are more numere us than in any other part. Details as to the routes in the Wistern Itimalayas have been printed to accompany these Ronte Maps, these details give the distanees, hoights \&e., for the use of travellers who are constantly applying to this office for such information, and it is hoper that with the polymetrical tables attached to them they will supply all that is required.
(108.) A commencement has been made with a series of Trans-Frontior
(109.) A few other original maps and compilations of general interest have been prepared and published, and the Drawing Office has been busily occupied; the amount of work turned out, under Mr. Atkinson who has supervised it, is very satisfactory. The quality of the work has been steadily improving and I am hopeful that with more experience Mr. Atkinson will fully maintain the reputation of the office.
(110.) By the photo-zincographic process 16443 copics of charts, maps and diagrams have been printed of which 4703 have been coloured by hand, for issue to government officials and for sale to the public, and 13655 copies of forms for calculation and office work have been printed by zincography for the use of this department. Though the total number of prints of all sorts is about the same as last year a far larger amount of the elaborate kinds of work-maps and chartshas been performed, both these sorts of works are photo-zincographed.
(111.) Mr. Duhan resumed charge of his office as personal assistant in September 71, and has discharged his va-
Mr. H. Dulann, Surreyor 1st Grade.
Persozal Asistant. rious duties entirely to my satisfaction.

NO. XVI GEOGRAPHICAL.

TRANS-HIMALATAN AND TRANS-FRONTIER EXPLORATIONS.

(112.) Explorations have been continued in various directions on our western, northern and north-eastern frontiers. On the whole great progress has been made and one continuous line of explorations beyond the frontier has been carried right round India. The route traversed, starting from Sindh, goes to Khelát in Belúchistín and thence by Kandahár to Kábul. From Kábul it crosses the Hindu Kush mountains to Badukshín and thence up the head waters of the Oxus and across the great Pámir Steppe to Káshgar and Yárkand in Eastern Turkestán. From Yárkand the explorations follow the route to the Kárakoram pass, and thence the connection is continued by the regular operations of this survey to the Pangong lake, and south to the Indus, where that river first enters Ladák near Demchok. From Demchok the line of the explorations is carried up the Indus and its large branch the Gartung-chu to Gartok and thence across the Kailás range to the Mánsarowar lake. From the Mánsarowar the line is continued across the *ITimalayas, then down the course of the great Nári-Chu or Sang-po river (the Brálimáputra) to Shigatze and thence to Lhása the capital of Great'Tibet. This line with its branches is about 5000 miles in length and is connected with British India ly numerous cross lines, the details of which have from time to time been pullished in the reports of the Great Trigonometrical Survey. It must be remarked that these routes were all at great clevations above the sea, more than half being at over 12,000 feet, a fact which has of course added very much to the difficulties of exploration.
(113.) Very great progress has been made with a scoond line, inside the above line, in such places as it is required, the results of which will be published before long, though it is not convenient to do more than refer to it until the work is completed.
(114.) A commencement has been mate with a thitd line of explorations exterior to the first line referred to, and at a very considerable distance beyond it; some progress has alrealy been made with it, the first link being that from Yárkand to Khotan, determined by Mr. Johnson's exploration, and thence across the lofty Lingzitháng plateau to the Pangong lake. livom the Pangong our explorers have extended the line by a traverse to Rudok, the capital of the Chinese districts of Pangong \&e., and thence, over the very elevated plateaux north of the great Aling-Gangri peaks, to the'Thok-Jílung gold ficld, passing througha succession
of gold and borax fields. From Thok-Jálung the line has been extended southeast through Majin to the Shellifuk lake, north-east of the Great Kailás Parbat over the most elevated plateaux in the world; the explorers having leen for months at over 15,000 fect above the sea. This portion of the outer line is connected with the Mansarowar lake. Farther extensions have been made to the west and north of Lhása, and I trust eventually that a juuction will be effected between this and the portion near Shellifuk and thus open out a large portion of the geograply of Central Tibet. On the west some extension has alrealy been made with this outer line beyond the Oxus and I am hopeful that more will be fortheoming. In this report details are given with respect to one of the connecting lines betwren the inner and midde line of explorations, viz., between Dárjiling and Shigatze in Great Libet on the one side, and between Sligatze and Nepal on the other. These lines of exploration open out the grogriphly of a very large tract of country as to which we previously had but the raguest eonjectural indications. The routes may be described as going right round the great Mount Brerest, penctrating on the north, to the Sang-po or Brathmaputar River and thence sonth-west over the wellknown 'lingri maidin, the most extensive platean on the south of the *limalaya watershed that is drained by streams which flow direet into Inclia.
(115.) From Tingri the line passes to the west of Mount Ererest, and again connects with the work brought up from India.
(110.) The greater part of this work was done by one explorer ; on a referance to the map it will be scen that his route for some distance corresponds at points with Doctor (Sir Wm.) Lfooker's route west of Dirjiling, the new ground commencing from his most north-westerly points near the Wallanchun and Kanglachem passes, cmbraces a portion of the great eastern banch of the Arun river, then passes a large lake of which we had previonsly heard though its position has never, as far as I know, cren been indicated on any map. The position of a number of peaks, north of those which are visible from the side of India, have been determined. The country has of course been crossed previously by the Ghurkas, Niwars and other natives of the adjacent countries, but as far as I know has never been even seeu by an European. Amonerst other places this route has fixed the position of the colebrated Sakya monastery second only to that of Tashi Lumbo. The route traversed is 81.4 miles in length of which 500 miles may be said to be over entirely new gromed and the remainder, though close to a line which at least one Luropean has gone along, has never been regulary surveyed before. This explomation with its learings de., opens out the geography of nearly 30,000 square miles of what has hitherto been all but treve incognitu, it more especially elucidates the geography of the hasin of the Armo or Arm Kosi river, the largest, feeder of the great Kosi river, which drains the whole of Eastern Nepal. The couses of its upper fecders have been hitherto a puzale to geographers.
(117.) The routes give an independent determination of the longitude of Shigatze and prove that the value whieli I adopted for that town, based on 'Tumer's Route Surver, was a very close approximation. This point was fully disenssed in my 'Trans-Himalayan report for 1805 - 67 on the Chicf' Pandit's exploration firom the Mánsarowar lake to Lhása at page x , and it is gratifying to find that my reliance on 'Iurncr's work was not misplaced.
(118.) The explorer took latitude olservations at 11 points upon which the work depends, and he determined the heright of 31 places. Itis work has stood all the usual tests of comparison satisfactorily, and as it includes a considerable numher of peaks \&c., on both sides of his route: I think it will prove a valuable addition to the trans-frontier geograply of India.

[^0]
T. G. MONTGOMERIE, Major R.E.,

Abstract of the out-turn of work executed by the Great Trigonometrical Sarvey Parties, during the Official year 1871-72.

	1	2	3	4	5	6	7	8	9	
Description of Details.		$\begin{aligned} & \text { Eastern Frontier Series } \\ & 14 \text {-inch Theodolite. } \end{aligned}$								+ 4 + 0 H
Number of Principal Stations, newly fixed,	...	5	13	8	15	10				51
Number of Principul Triangles, completed,	...	5	18	11	19	11	\ldots	\ldots	\ldots	64
Area of Principal Triangulation, in equare $\begin{gathered}\text { miles, }\end{gathered}$	\ldots	4.20	3041	511	3099	3239	...	\ldots	\ldots	10,310
Lengths of Principal Serieg, in miles, ...	\ldots	40	128	42	86	100	\cdots	\ldots	...	396
Areraye Trinngular crror, in seconds, ...		$\bigcirc \cdot 84$	062	$0 \cdot 39$	0.59	$0 \cdot 33$...	\ldots
Arerage Probable errors of Angles, in seconds, \pm	\ldots	0.78	$0 \cdot 28$	$0 \cdot 25$	$0 \cdot 17$	$0 \cdot 14$...	\ldots	\ldots	
Azimuthe of verifcation, $\quad . .$.	..:	...	1	...	1	1	3
Number of Secondary Stations whose positions and heights have been fixed, ...	\ldots	35	7	13	23	55	142	221	287	783
Do. of Secondnry Stations whose positions? only have been fixed,	...	\cdots	\cdots	5	\cdots	\cdots	\cdots	739	111	655
Do. of Secondary Triangles of which all ? 3 angles have been obsersed,	...	4	1	15	26	6	213	188	80	533
Aren of Sccondary and Minor 'Irjangulation, ? in squaro miles,	\cdots	2300	2109	134	2136	2053	1036	1900	$\ddagger 1862$	\$13,530
Number of Foints fixed by intersection, but \} not visited,	\cdots	47	22	5	74	49	535	?	302	?
Length of boundary lines and check lines? surreyed, in miles,	"'*	\cdots	\cdots	\cdots	\cdots	\cdots	595	985	78	1608
Area Topographically surveged on acale of 1 inch $=1$ mile, in square miles,	\ldots	\cdots	+1279	$\dagger 1279$						
" Topographicalty surveyed on scale of ? 2 inch $=1$ mile, in square miles, \quad)	\ldots	...	\cdots	\cdots	\ldots	\ldots	1382	2036	...	3418
Number of Revenne Survey Stations and ? boundary pillars, fixed,	\cdots	4	\cdots	1	\cdots	\ldots	\cdots	\cdots	15	20
Do. of Principal Stations selected in ad- $\left.\begin{array}{cccc}\text { vance, } . . . & \ldots & \ldots & \ldots\end{array}\right\}$	2	6	18	6	\ldots	3	\cdots	\cdots	\cdots	95
Lengths of Approcimate Series, Principnl, ? in miles,	\cdots	\ldots	115	60	38	28	\ldots	\cdots	\cdots	241
Number of Towers, constructod,	3	...	\cdots	6	2	1	\cdots	\cdots	\cdots	12
Do. Platforms constructed for Principal? Stations,	\ldots	\cdots	14	4	9	11	...	\ldots	\ldots	38
Do. Platforms constructed for Secondary ? Stntions,	\cdots	\cdots	\ldots	12	8	\cdots	\cdots	\cdots	...	20
Do. Miles of Rays cleared, ...	62	40	.	113	18	J	149	387
Do. Miles of path-way made....	\ldots	99	\ldots	5	2.4	...	\ldots	\ldots	123
Do. Hill tops cleared of forest and jungle,	6	2	15	9	11	10	63
Do. Primeipal Stations whose elements ,	...	5	...	\ldots	11	7	\ldots	...	\ldots	23
Do. Secondary Stations whose elements? were computed,	\cdots	51	\ldots	\cdots	42	48	?	\cdots	533	\cdots
Do. Preliminary Charts of Triangulation, Do. Principal Stations placed under ofli.?	\cdots	1	...	\ldots	1	1	\cdots	\ldots	\cdots	8
Do. Prineipal stations placed under olli-? cinl protection,	3	\cdots	\ldots	8	9	8	\ldots	28
Do. Siations protected and closed, ...	3	\ldots	\ldots	9	10	8	\ldots	:..	\ldots	30
Length of Line by double lercling, in miles,	\ldots	\ldots	\ldots	\ldots	245
Number of points whose hoights were de- ? termined by Spirit Levele, ...)	...	\ldots	\ldots	...	\ldots	\ldots	\ldots	.	\ldots	190
Number of points whose Latitudes have been determined Aatronominally,	\cdots	...	-	\cdots	\ldots		\ldots	\cdots	\cdots	25
Length of Route Survey. in miles, Number of Stutione nt which complete Tidal	\cdots	\cdots.	.							
observations, have brem made,	\cdots	\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	...	1
Ares of unknown territory explored, in equare miles,"	\cdots	\cdots	\cdots	\cdots	...	\ldots	\cdots

\ddagger Including $302 \mathrm{~S}_{\mathrm{f}}$ uare miles of Trans-Sutlej Minor Triangulation.
\dagger Excluding 93 Squaro miles of the Nepal border sketched from Kumaon.

APPENDIX.

EXTRACTS FROII TUE MABRATIUE REPORTS

of the

EXECUTIVE OFFICERS' IN CHARGE

OF THE

SURVEY PARTIES AND OPERATIONS.

Rules for pronouncing Indian proper names; a has a variable sound as ia woman, rural, paltry; \boldsymbol{a} as in tartan; isat in clique; C as in rapine; u as in bull; \boldsymbol{u} as in rural; o as in note; e as a in acy; au as ou in cloud; ai as i in

Extract from the Narrative Report-dated 16th July 1872-of W. C. ROSSENRODE, ESQ., Deputy Superintendent 3rd Grade, in charge Bider Longitudinal Series.

[^1](4.) The country through which the operations were carricd on was hilly throughout, very wild, difficult and unhealthy. The jungle was dense, the passes lengthy, tedions, steep and stony. In ascending and descending them, the pack bullocks (the only available carriage in this district) were mostly disabled in the early part of the season aud were completely unserviceable on closing work. From sorc feet and sore backs many died and others being unable to follow the camp were abandoned. The scarcity of rain and the failure of the crops greatly enhanced the difficulties; for supplies of every description had to accompany the camp and provisions had to be collected and brought from long distances. A depôt was established at each station for the use of the camp during its stay there, and the remainder sufficed for the stages between it and the next station. The arrangements for provisioning the party were good and no inconvenience was experienced during the whole of the field season. Owing to the drought, the streams which were abundant the previous scason were found dry in many places.
(5.) Mr. Henry Beverley has in his Narrative Report of last season, 1870-71, describerl the country so carefully and minutely that I can add nothing more to it, for the country in which he worked was similar to that in which I was employed, -in fact, it was a part of the same country presenting the same features and peculiarities of configuration.
(6.) The sides of the triangles were mostly long. Diring favorable weather no detention occurred. I completed one station in Decenber and five stations, including an Azimuth, in January. Marching was tedious and trying, and much time was lost in crossing over the hills through the (ghats) passes. It occupicd my camp 8 days to reach P'incha Ifill Station from Kaurailbiding Hill Station, the direct distance being only $29 \cdot 3$ miles; each stage was from 12 to 16 miles and two of these were of greater length. The tortuous paths strewed with stones over the ronghest ground traversed by man and beast was most trying to all in canp and more especially to the carriers of the great Theodolite, who although assisted by coolies could barely make much progress in ascending and descending these stony hill paths. To clear these paths of stoncs and rocks would cost immense sums of moncy and oceupy montlis of labor. They were therefore merely widened for the great Theodolite by the jungle being cleared and by the removal of large rocks, or, if these could not be removed, by avoiding them.
(7.) The great Theodolite could not on two occasions come up, and the men had to bivouac in the jungles and join camp the next day. As has already loen said much time was lost in marching from station to station owing to the circuitous routes we had to adopt to take advantage of the easiest known passes to eross over these mountain ranges. These delays would have been greater had not Mr. Beverley furnished me with the routes from station to station, nad how they should be visited with reference to one another. He had been over the country and was able to give me the most direct routes to cach station of each figure and all unnecessary detours were thus avoided by visitiug each station according to the programme provided by him.
(8.) About the middle of February the jungle was fired in all directions and smoke spread gradually. The haze set in about the same time and the atmosphere became daily more unfavorable for observations, until the whole country was enveloped in haze and smoke, and nothing could be seen. Our luminous day and night signals could not penetrate this thick atmosphere.
(9.) From the 23rd February to the 24th March, I was detained at Munas Hill Station for the observations which were completed in a month during occasional breaks of favorable weather. At the above station not a single angle to lamps was observed. At the next station, Báli, I was again detained for nearly a month : a few showers of rain accompanied by storms, two of which were very severe, enabled me to complete my observations and released me from this station.
(10.) The above two stations furnished the base for the Southern Section of the Biláspur Meridional Series; and on completing them the junction with the Coast Series was accomplished.
(11.) I proceeded to Tulsi Hill Station, the centre of the first pentagon of the Biláspur Meridional Series Southern Section. Occasional showers of rain enabled me to progress rapidly with the final observatious which terminated at Bárdwár Hill Station on the 4th May 1872. There was sickness during the whole field season, but at Bárdwár 10 and 12 men were daily prostrated with fever; I therefore closed work and returned to recess quarters. My second attack of fever occurred here and I returned to Wálter by dák and was seriously indisposed on the journey; since my arrival I have had frequent returns of fever.
(12.) There was very great sickness in camp this field season, not a single man in the whole party escaped from fever. My first́ attack occurred at Kálingkonda Hill Station, my third Station in January, while observing an Azimuth there. I persevered with the observations notwithstanding my daily bouts of fever. Fortunately Mr. Beverley was in camp and assisted me both in the observatory and office, and I am greatly indebted to him, for had he not been present, the star could not have been observed by me single-handed owing to the bad state of health I was in at the time.
(13.) Sickness reduced the strength of my native establishment considerably, and so crippled me that I had to carry the stand and telescope of the great Theodolite and most of the Government property on coolies. Some of the sick men were useless during the whole field season and were scnt home when I returned to recess quarters. Those men who returned with me comparatively well have, since coming in, had frequent relapses of fever, and most of them have enlarged spleens and are still in hospital under treatment. There were no casualties in the field, but since returning to Walter 5 deaths have occurred, 4 from fever and 1 from dysentery.
(14.) The operations have entered the Bastar and Jaipur states, and I believe the country will improve as we procced northwards, and there will not be so much sickness during the ensuing season in the more open country through which the operations will be carried on.
(15.) Wild animals are very numerous in the tract triangulated last season, and tigers are most destructive : villages have been deserted and some of the passes have been closed owing to their depredations. While engaged in observations at Kauralliding Hill Station, I ordered a good portion of my camp to procecd to the first stage en route to Páncha Hill Station and to atait my arrival there. These men were kept at bay for hours by a tiger which I was informed took possession of the road that had been cut for the great Theodolite. The camp moved on in a body when he had retreated into the jungles after the men had yelled and shouted for hours. Often the villagers cautioned us not to procced by paths which were in possession of these man-eating tigers, which, waiting their opportunity, carried of numbers of people as they, unsuspicious of danger, travelled on the path.
(16.) The inhabitants are few and the hamlets very distant from onc another. Very few large villages were met with. Frequently a single large hut was seen; its occupauty consisted of fathers, sons, and grandsons with their wives and children. A spring of water or a stream, a small cleared patch of ground for cultivation of grain, with a few lime, orange, jack and mango trees were suthicient to satisfy the wants of the family. The inhabitants are steeped in ignorance and vice: men, women and clibldren drink toddy from the sago palm, or distil spirits from the Mana Howers which they also dry and retain for food. They drink to excess, are very poor and wear a rag 4 inches wide and two fect long to hide their nakeduess. Among some of the lill tribes mule figures are the rule and not the exception. The authorities have tried to cirilize them by distributing cloth among them but they will not clothe themselves.
(17.) Owing to the party being short-handed, by the absence of Mr. Bell on furlough and the crippled state of my native cstablishment during the cotire field season from sickness, very little aecondary work lias been done: what has becu accomplished has becn executed by me
with the grent Theodolite. A great deal more could have been done hard I men to renew the hill marks of the Topographical Survey which were consumed by fire aud had the weather been favorable. Many of the poles of the Tupographical Survey, indicating their stations, were obscrved from one station only, the weather becoming unfavorable they could not be seen from Munas and Báli Hill Stations when the jungle was fired and the haze set in.
(18.) I was not unmindful of the importance and value of Sccondary work in connection with our principal operations. I trained Mr. Wrixon for the work and detached him on the 24th February to lay down Jaipur, but want of experience and bad weather prevented his completing the Secondary work I assigned to him.
(19.) Mr. Henry Beverley, Surveyor 1st Grade, was detached on the 17th January after the Azimuth obscrvations at Kalinykonda Hill Station to extend the Approximate operations. He revisited Bárdwár and Saikírpan Hill Stations which he had fixed the previous season, and continued his operations and connected with the stations of the Northern Section Biláspur Meridional Series Malewa and Bamnai. The fruits of his labors are 16 stations selected, the lills cleared of jungle and platform's constructed. His zeal and energy have been most conspicuous, for notwithstanding the great sickness among his men he pushed on until he completed his portion of the work and effected a satisfactory connection with Mr. Clarke who carried on the Approximate Series of the Northern Section. Mr. Beverley was delayed by bad weather, and as the scason was far advanced and the men of his establishment were prostrated with fever he could not undertake Secondary work. He joined me at'Tulsi Hill Station and remained in camp assisting me at two more stations Pothdongri and Saikárpan; he was again detached to alter a compound figure iuto two single ones. As the whole of the Approximate work has been completed, Mr. Beverley cau, the next season, be employed uninterruptedly on Secondary operations.
(20.) Mr. E. P. Wrixon, Assistant Surveyor 2nd Grade, was employed in recording obscrvations and in current office duties until the 23rd February. He was detached on the 24th of the same month to lay down the town of Jaipur by a series of Minor Triangulation, and after that to lay down the town of Bastar. Owing to the hazy weather during the latter part of Fcbruary, the whole of March and the first week in April, lie was unable to do any work as he was aiming to connect Jaipur with large triangles. This is the first time Mr. Wrixou has been detached on Sccondary Triangulation, I trust his want of experience combincl with the unfavorable weather which set in immediately after he was detached will plead for hin for the small out-turn of work. Mr. Wrixon twice suffered from fever in the field and his detachment suffered greatly from repeated attacks of fever.
(21.) In conclusion I have to refer to the Hospital Assistants who were with me during the last field season. The first-class IIospital Assistant who accompanied me from Wialter was an experienced, attentive man and fully competent to take charge of a large camp. He was however old and infirm and was very soom disabled from repeated attacks of fever. A second-class Hospital Assistant succeeded hin ; this man had been employed uuder Colonel Saston, Deputy Superintendent 'Topographical Survey, in charge No. 3 Party. He was acequinted with the country and he conld not help joining when posted to the Bider Longitudinal Series, but he was so intimidated that shortly after joining he complained of illness. He travelled in a dúli and was of very little use during the remainder of the season. He was always complaining of his own illness and the sickncss in camp, and was continually urging me to close work after the 1st April. On the plea of ill health he was inattentive and careless. He went to hospital shortly after my arrival at Wálter, and has obtained leave on Medical certificate for 7 months. The third-class Ilospital Assistant doing duty at present with me promises well.
(22.) The following is the out-turn of work exceuted during the ficld season :- Principal stations newly fixed 13
No. of Principal T'riangles completed 18
Area of Principal Triangles in syuare miles completed 30.1
Length of Principal Series in niles 128
Azimuth of verification 1
No. of Sccondary Stations whose positions and heights have been fixed 7
No. of Secondary Triaugles of which all three angles have been olserved 1
Area of Sceondary Triangles exterior of Principal 'rriangulation, spuare miles 2109
No. of points fixed by intersection but not visited 22
No. of Principal Stations selected in advance including Malewa and Bamnai of Northern Section, Biláspur Meridioual Series 18
Length of Approximate Series in miles 115
No. of Platiorms constructed for Principal Stations 14
No. of miles of pathway made 99
No. of hill tops cleared of l'orest and jungle 15
No . of Statious protected and closed

.. nonc

The area of the Principal and Secondary Triangles completed during the field scason 1871-72 is 5150 square miles, at a cost of Rupees $34,768-12-8$, which gives a rate of Rupees 6-12-6 per square mile.

Extract from the Narrative Report-dated 12th July 1872-of W. G. BEVERLEY, ESQ., Assistant Superintendent 2nd Grade, in charge of the Eastern Frontier Series (Assam Valley Triangulation).

(2.) The party marched from Gowhatty on the 17 th December viî Naugong, and proceeded on to Kankochan Hill Station where I arrived on the 2nd January.
(4.) At the ciose of last season there were only two stations selected and built in advance, nind although Mr. O'Sullivan had laid out the Khelibúishon pentagon, he was doubtful whether the stations of Cheníábúishon H. S. and Sapanajung H. S. as then selected, were mutually visible, as he had not been able to determine that point finally the previous season from the very unfavorable weather at its close. The rejection of one of these points and the conversion of the figure into a series of simple triangles seemed also probable. I therefore waited at Kankochan H. S. until Mr. O'Sullivan had decided on the position of the forward station Cheníabúisloon H. S. which he did by the 9 th. The principal obscrvations at this station being completed I marched on to Khclibuíshon H. S. and having taken all the observations there, I proceeded to Chenghehishon II. S. where I arrived on the 24th January. I was detained here four days waiting for the signal at Sapanajung H. S. On the evening of the 27th I received a letter from Mr. O'Sullivan informing me that he had at last been compelled to reject that point and I closed at this station and left on the 28th Jauuary.
(5.) I had desired Mr. O'Sullivan to reject Sapanajung II. S. in case he should not be able to see it from Cheníabúishon H. S. as the best part of the field season liad already gone and much time had already been lost. The station of Cheniabuíshon H. S. is situated on the outermost of a series of parallel ridges of uniform height and densely wooded, the site selected was the only onc which could command a view of the plains to the North and East and also be visible from the back stations, hence it was not considered advisable to remove it, as it would not only have createl delay, but involved re-observing the angles at two stations, but above all made it difficult to carry the series into the plains which it had now become necessary to do.
(6.) Mr. O'Sullivan had reported on his return to recess quarters at the close of the field scason of 1870-71, that he had received reliable information that the Lotha Nágás across the Dhunsiri River would prevent the entry of any Survey parties into their district. As this information had not been alluded to in the General Report, nor in the instructions for next scason's work, the method of procedure for carrying the triangulation into the plains and other considerations involved, were not discussed by me at Head Quarters with yourself. I was informed by the Commissioner of Assam when I requested his opinion as to entering the Lotha Naga hills, that no Survey operations could for the present, be carricd on in the tract in question, as the tribes were hostile.
(7.) I was in hopes however that it might have been possible to carry on a series, with alternate stations in the plains and in the outermost low range, which from the maps, appeared to lie in and along British boundary and were uninhabited, and I communicated with the District Oflicers on the subject and was informed, after considerable delay, that the Sibsigar District had been closed to the Hill tribes and stockades crected to prevent their ingress into Assam; that no Survey party could enter into the Hill Districts without a very strong boly of police, which coold not then be furnished, and that the maps were quite untrustworthy, as the British boundary was at least 7 or 8 miles from the foot of the hills.
(8.) My plans for continuing the triangulation along the hills laving thus been bamed in every way, I was compelled to resort to the plains and the triangulation was carried down on the side Kankochan HI. S. to Cheníábúshon H. S. With the hope of being able to obtain jeaks on the outer range, the station of Golághát hat been selected by Mr. O'Sullivan and a platform and pillar built. As the hills were no longer available, Mr. O'Sullivan was directed to carry the serics ly symmetrical, single triangles though the plains of Sibsiggr.
(9.) It was some time before I could decide on the most suitable course the serics should take ; proceeding in a direct line was inadmissable as the centre and southern portion of the District is studded with tea plantations and grants, the owners of which were not at all disposed to have lines run through their estates, or their property injured, even on payment of compensation, which was given in one instance last season, and was excessive in regard to the damage sustained. This was a consideration of the utmost importance as the means at the disposal of the party would not admit of such heary compensation as would be demanded, while the progress of the work would probably be delayed by opposition and litigation. I therefore decided on carrying the series along the course of the river by which means very heavy jungle cutting, as well as tea plantations would be avoided and the height of the towers would be reduced, and there would be little or no compensation to be paid, thus making it the most economical course to adopt; at the same time the triangulation was not inteuded to be restricted to the river, but to deviate therefrom whenever it should be found necessary.
(10.) When the direction of the series had been decided upon I returned to the hills and visited Cheníábúishon H. S. and took the observations there, including those to Golaghát T. S. and Bor-Chapri T. S. at the latter of which stations Mr. O'Sullivan had now built a masonry pillar. Observations at Cheníibúishon H. S. were completed on the 23rd February, at Bor-Chapri T. S. on the 26 th and at Golaglát T. S. by the 7th March. After this I took up the Approximate work until the beginning of April, returning to Kankochan H. S. to complete the observations to Bor-Chapri T. S.
(11.) The Approximate work during the past season has been carried only a very short distance owing to the lateness of the season, the nature of the country, the scarcity of local labor and the continued unfavorable weather. The out-tron of work is small but no energy has been spared, nor means untried to overcome the difficulties which had to be encountered and which are in my opinion greater than in any other part of India. The difficultics experienced in the selection of statious in the plains of Assam are manifold.
(12.) The country does not slope down gradually from the foot of the hills to the Brahmáputra River, but consists of a succession of low ridges frequently covered with almost impenetrable jungle, not running parallel to the streams which gencrally flow down from the mouutains at right angles to the river, as may be naturally supposed, but in most instances at right angles to those streams, with an abrupt fall into the basin of the Bráhmíputra. It is dificult in such undulating tracts with wide level bits of country, to fix upon any particular length of side, aud it was found imperative to have the side Goláglát T. S. to Madaigaon T. S. 10.4 miles, while the height of the tower at the latter place, it will be necessary to build over 30 feet to ensure mutunl visibility. The series carried along the course of the river will render so great a height unnecessary for future stations.
(13.) Frequently extensive patches of tall grass and reed jungle were met with, which elephants were employed, by Mr. O'Sullivan, to crush down on the rays, by means of heavy loge dragged by them. In some places the rays have been carried through boggy and swampy ground with thick tall reeds which had to be cut one by one. Occasionally belts of jungle had to be traversed, the trees in which, with few exceptions, were of no great diametcr, but were so interlaced with canes and bamboos, and had so heavy an undergrowth, that it was a most arduous and tedious undertaking to carry a narrow gap through. Between Bor-Chapri T. S. and Nikori Chapri T. S. Mr. O'Sullivau was occupied nearly three weeks in carrying a ray, the undergrowth on which was not only very heavy, but hid from view high mounds raised by earth-worms. In ground of this nature pcrambulators were useless and Mr. O'Sullivan adopted a rope 132 feet long made impervious to wet by means of wax and oil, and which was tested cvery morning.
(14.) Local Labor was rarely procurable in Assam and the District Officers scarcely gave us any assistance whatever, although the villages occasioually met with were able to furnish a large number of coolics, and with proper parwíuns the mauzádárs would have readily provided them. The difficulty of obtaining supplies for the camp was also a source of delay. These difficulties are however likely to be very much diminished next season, and with a better knowledge of the country and our requirements, an establishment now trained to plain's work, the progress in the ensuing season may be confidently expected to be more rapid
and satiffactory.
(16.) The triangulatiou in the hills traversed the country of the Mikir and Ringmáh Nága Tribes whose characteristics have becn already described by Mr Rossenrode, as well as the various insect annoyances, to which the party was also subjected during the last field season, though not to the same cxtent. No annoyance was experienced from tigers and wild
elephauts.
(17.) Very little Secondary work has been obtained, smoke and haze obscured the atmosphere from about the middle of January, and though occasional sharp showers cleared the air for a day or two, the distant penks were iwariably enveloped in haze and fog. Throughout the season, the weather has been very unfavorable, there had hardly been a week of uminterrupied dry weather, and at the beginuing of April the rains were so heavy, that, in two days the plains were completely submerged.
(18.) The district of Silsigar in Upper Assam is one of the healthiest in the province and wuless the rains are protracted, field work can be resumed early iu November with safety. The atmosphere is generally very clear throughout that month and up to the middle of December, and I have hopes of being able to get a large amount of Secondary work early next scason, soon after taking the field, which 1 purpose doing in the beginning of November. The health of the establishment was on the whole pretty fair. Four deaths occurred during the season, two of which were from complaints of long standing. The party arrived in recess quarters in the first week of May.
(19.) Mr. O'Sullivan accompained me from Gowhatty. Before taking the field he was emplosed in equipping and organizing the Native Establishment and in training men in the use of the heliotrope. As soon as Mr. O'Sullivan had fixed the station of Cheníabuíshon H. S. he descended into the plains and was employed on the Approximate Series. He sclected 4 stations, built masonry pillars at two, carried about 55 miles of trial and 30 miles of final rays, and was compelled to close work on the 20th of April from want of supplies. Mr. O'Sullivan's progress, in spite of the great difficulties and hardships he had met with, is very good. His thorough knowledge of Assam and its people, lis determination and energy, and zeal for his duties, combined with professional aptitude, render him the best fitted for conducting so difficult and troublesome an operation as the Approximate series in the Assam Valley.
(20.) Mr. Bryson accompanied me to Kankochan H. S. as observatory recorder and also took part in the principal observations at two or three stations. On Mr. O'Sullivan's taking up the Approximate work in the plains, he was at first employed to superintend the building of one station and to carry a ray from Golighlát T. S. to Malaigion T. S. Subsequently he was deputed to Secondary work chiefly with a view of fixing all the Revenue Survey paka pillars on either side of the Bráhmáputra River. Mr. Bryson from an utter want of encrgy and interest in his duties, has repcatedly failed to carry out my instructions, or to complete the work allotted to him.
(21.) Mr. Harris was transferred temporarily from the Bráhmáputra Series for the purpose of building the pillars required on the Eistern Frontier Scries. He was much delayed by the numsual detention of the Assam steamer and joined the party on the 17 th March. He took up the work assigned to him at once, and although new to the country and the languqe, was able to make his arrangements with his usual judgment and prudence. The continued heary rain throughout the time he was engaged on his work threw him back considerably, and he could only complete two pillars and build the foumbation of a third to a height of l foot, besiden prepuring materials \&se., for a fourth station. Mr. Harris returned to recess quanters some time alter the rest of the party, on the $28 t h$ May.

Extract from the Narrative Report-dated 15th July 1872-cf Lieutenant M. W. ROGELSS, R.E., Cfliciating Deputy Superintendent 3rd Grade, in charge Bombay Party.

(1.) The Head Quarters left Bangalore on the 6th November and marchel to Gutti and thence by train to Ráichure, reaching the first station of the scason, a fow miles north of the river Kistna, on the 26th Nuvember. I at once commeuced observations nud contimued them without intermission until the series was brought up to the sides Shilapali-Goraegat-Topkondu of Sir Andrew Waugh's Great Are. This was completed on the lst March.
(2.) The country, through which the scries passed this senson, helongs to H. H. the Nizam and is apparently little known or visited. About 20 miles north of the Kistna, a range of hills ruus from east to west, parallel to the river, which is about 1200 feet above the sea;
on ascending this range the country is hilly and very stony in parts, and with a mean elevation of 1800 fect. There are no roads and the villages \&c. seem to be generally in a state of decay, owing, I was told, to the failure of the rains for some years past. The greatest portion of the country traversed was Jágír-land, held by noblemen who reside in Haidarabad, and have apparently no care whatever for their dependents. In most of these Jágirs 'the Nizam's authority seems only nominal; the present Minister, Sir Salár Jáng, is however improving this state of things and is resumuing all the Jigirs which were held for military service and are not family possessions. This has been done in several cases under my own notice, and the result to us las generally been-that where, under the Júgírdár, my assistant last year complained of hindrance and incivility, I have been agreeably surprised at the dfference under the new régime. The new state railway runs across this tract of country and will probably bring roads and a better state of things in its wake.
(3.) The country to the west of the series is very stony; slate of a rough description is plentiful and is used in many places for roofing, and all the villages are built of a whitish stone which gives them a neat and cleau appearance at a distance.
(4.) Towards Bider the whole country riscs again and forms a second plateau, with an elevation of about 2000 fect. Along the southern portion it is covered with thick jungle, which, together with the flatness of the ground, caused considerable dclay and trouble in effecting a junction with the old work which itself appears to have been carried out of the meridian in order to avoid that portion of the country. The soil about Bider is red, and ironstone abounds, and at Koyer and many other villages a good deal of iron is smelted; they do not, however, quarry very much, but use the ironstone gravel which seems very rich in metal.
(5.) On the completion of the Principal Series, I took up a Minor Series to fix the city of Haidarabad, and the cantoument of Sikandrabad. I used the 2 -inch Theodolite in all cases save onc, where I was obliged to choose a very rocky and difficult hill, in place of the hill of Golkonda, which I hat reckoned upon occupying. At the instance of the Resident, my signaller was allowed to make a mark and shew his heliotrope from the fort, but when I arrived near the city myself, I was informed that no European was allowed into the fort or cver had been, so I was oliliged to select a new point. Save the Chár Minár, a large building at the junction of the main streets, there are no prominent buildings in the city itself; the Mecca Masjid, though a well built landsome building, having no minarets of any size. This Serics was finisherl on the 6th April. The next portion of the revision was 100 miles north and the weather had by this time become very hazy and hot, so I determined to march back to Gulbargah which I reached on the $1+t$ th.
(6.) I there placed the theorlolite, tents \&c. in safety and proceeded by train to Bangalor, which I reached on the 20th April.
(7.) The principal wook of the field season has been as under;-

The serics has licen advanced 86 miles and completed. 56 angles have been observed at 16 Principal Statious forming the northern portion of a double polygon, one double polygon and the larger portion of a doable polygon and compound figure, which forms the junction of the two series; the whole ecvers an arca of 3099 square miles. An Azimuth was observed at Kodangal S., and 4 Zenith distance stations fixed around for Captain Herselhel. 34 Secondary angles at 2 principal and 8 secondary stations were olserved, on the Haidarabad Series, with the 24 -inch Theololite, covering an area of $83: 2$ square miles. (All Secondary and Intersected points, obscrved by the party, were fised in height as well as position.)
(8.) Aneroid Rarometer observations for height have been carriced on regularly throughout this and the last field season whereby the heights of all the hills on which the stations are, and halting grounds, have been fixed. This scason the heights of hills have been taken by simultancons observations with two ancroids, a method of very fair aceuracy. I have the honor to forward herewith a list of heights in the series from Bangalor to Bider and Haidarabad, containing two lines of road and rumerous places in the districts. The heights from Bangalor to Gutti, were determined by simultaneous observations. Captain Hersclel arranged to place his assistant and burometcr nt ny disposal and I marched to Gutti, myself one stage in advance, whercly daily simultaneons differcuces were taken, the barometers being compared cecry evening. This arrangement when practicalle should be very fairly correct. 1 shall be obliged, should this table of heights be printed, if a few copies of the table be priuted separately and forwarded to me, as myself and Major Braufill ofteu reccive applications for heights in Mysor \&c.
(9.) At the instance of the Resident, Mansablín's were appointed by H. H. the Nizím's Govermment to accompany the camp of myself and Mr. Price. The one for the latter gentleman did not appear, but to Mamsabdír Muhammad Faiyázuddín Khán and his sepoys who accompanied me I am much iuclebted; without their aid, I should inevitably have been delayed, and possibly have been brought into unpleasant collision with the employes of the Jágirdárs; as it was, I had very little trouble. My best thanks are due to the Resident and H. H. the Nizám's Minister for the help they rendered to me.
(10.) Mr. Price was employed in selecting and building stations on the Approximate Series; he selected 6 and built 13, besides selecting 8 Zenith distance stations for Captain Herschel. I have alluded to the difficulties of the junction figure, which necessitated a high perforated pillar station with a wooden platform for the observatory tent. Whilst selecting and building near Nander on the Sironj-Bider section of the Are, his camp was attacked by smallpox and I am sorry to sny he lost his wife; he himself suffered severely at the same time from fever, and I therefore directed him to rejoin me at Gulbargah whence he proceeded to Bangalor with the Head Quarters. As usual his work has been good and he has spared himself no exertion to carry it on; he is a very praiseworthy and able assistant. He has had the entire selection of the Scries, and I trust that on the completion of his 9 years service he may be promoted.
(11.) Mr. Bond worked at and completed the Kadapa (Cuddapah) Minor Series, he triangulated a direct distance of 90 miles by 11 triangles covering an area of 1124 square miles, his instrument was a 10 -inch Theodolite and his average triangular error 1.36 seconds. In addition he fixed 33 intersected points and olosed all the stations of his initial sides. After finishing at Kaddapa he marched to Karnúl and began a short serics to connect that place, but his health gave way under the exertion and great heat and he was ordered by the Surgeon of Karnúl to return to Bangalor. I have already communicated with you on the state of his health, which has been severely tried in the department. The quality of his work speaks for itself and I am entirely satisfied with it and that he has worked to the utmost of his power.
(12.) Mr. Torrens accompanied me as recorder for the first six weeks, during which time he instructed Mr. Oldham in his work; he then went with Mr. Price and sclected and built a principal station, after this he prepared the Haidarabad Scries; I then sent him to Captain Herschel under whose directions he marched north and selected 3 stations for Zenith distance observations and also reconnoitered the country with a view to choosing stations for doubling the Great Are at that point. This year has been his first at any independent work and I see no reason to alter my favourable opinion of him. He has now served his time for promotion which I trust he will get when a vacancy occurs.
(13.) Mr. W. Oldham joined the department in October, from Bishop Cotton's School at Bangalor where he had been acting as under Master; he has been with me as recorder during the season and worked well and obtained all the necessary knowledge in departmental forms. At the end of the season he closed 3 stations independently and has altogether given me satisfaction.
(14.) During the last recess, one double Polygon, one Pentagon and one Azimuth were computed, together with all the Secondary work, bringing up the Scries to date.

Heights in Mysor, Ballári (Belary,) Kadapa (Cuddapah) and the Nizám's Dominions.

- Bombay Party. Seasons 1869-70-71-72.

Heights in Mysor, Ballári, Kadapa and the Nizám's Dominions.
 - Bombay Party. Seasons 1869-70-71-72-(Continued.)

Name of Place.				Remarke and Descriptions.
Boglemnurkouda H.S.	\cdots		2350	\bigcirc on top of hill.
Kondánúr village	1024		Camp in tope N. of village $\frac{1}{2}$ mile W. of rond.
Paumdi H.S.		1680	Flat topped hill close to Bangalor-Gutti Road.
Yainigamarri village	...	1634		
Sudápalli villnge	1155		Canp by tank 2 miles E. of Karnúl rond.
Kottur village	13.57		Camp E, of village.
Katomoraj H.S. ...	\ldots	2052	2053	
Shítabande village	\ldots	1373		
Bandimaddagu village	\ldots	1451		
Pulikonda H.S.	18 r 1	1802	\bigcirc on solid tower 16 feet high.
Hospetta village ...	\ldots	1321		
Gongondla village	...		1354	Highest point of low rocky hill.
Kerra Bellágal H.S.	\cdots		1423	Hill S. E. of village of Kerra Bellagal.
Krishnadodi village	\cdots	1055		Camp on bank of tank W. of village.
Adoni Drug H.S.	1997	2000	Trigonometrical \odot
Mallíabad H.S. ... Do. village ...	\ldots	1372	1771	Hill 4 miles S. of Ráichur. Nizám's country. Camp on a knoll E. of village.
Darrur H.S.		1805	In Geddáwal Rája's territory.
Do. camp	1257		N. foot of hill ditto.
Nandivía village	1210		Camp in palmyta tope E. of village.
Kotápalli Els. --	...	1.576	1579	4 miles N. of Kistna River.
Do. camp ...		1285		Half way between hill and village.
Cbintalíkinta H.S.	\ldots		1759	In Deodrug táluk 8 miles S. of the Kistna.
Do. village	\cdots	1285		
Janíkalu H.S.		1555	In Manwi táluk 9 miles N . of the Tongábudra.
Do. camp ...	\ldots	1292		Close to hill, opposite side to village.
Kinikerrny village	\ldots	1251		
Yedagiri village ...	\ldots	1225		G. I. P. Railway Station is 11, miles W.
$\begin{array}{cc}\text { Bima River } & \ldots \\ \text { Ditto } & \ldots\end{array}$	\ldots	1164 1189		Naikal Ferry. Water level in December. Ditto on West bank.
Naikal H.S.	1610	1611	
Do. village ...	\ldots	1207		
Yedngiri Drug		1792	Highest Tower.
Gannápur village	1328		4 mile E of village.
Naribupet village ...	\ldots	1454		Rája's grarden N . of Town.
Muktul village ...	\ldots		129.5	Roof of highest house.
$\begin{array}{cc}\text { Iupáhgat H.S. } & \ldots \\ \text { Do. camp } & \ldots\end{array}$	\ldots	2308 1758	2340	a mile S. of Trivallapur village.
Yeddalapuram village	.	1960		$\frac{1}{2}$ mile E. of village above the ghat.
Undurke village	1732		$\frac{1}{3}$ mile S. W. of village.
Korlah village	1.565		${ }_{\text {f }}$ mile S of village.
Hudngi ${ }^{\text {S }}$.	\ldots	$1+40$	1438	Trigl. Station in field 1 mile N . of village.
Andaki		$1+4.5$		Camp close to North of village.
Nelligat H.S. ...	\ldots	$20+8$	2036	
Mabbanpalli rillage	\cdots	1892		Camp half way between hill and villnge.
Chittapalli village...	...	1862		In tope on road S. of village.
Kodanyal S.	1907	1914	On rising ground 2 milen N . of villago.
Kushgi - ..		1705		Tope N. of 'lown on road froin Kodungal,
Worval ...	\ldots	17.39		d mile W. of large tank and N. of road.
Antawaram ${ }^{\text {a }}$..		1825		N. E. of village.
Pochawagat H.S.	\ldots	2371	2350	
Kusmasamudram ... Tandúr	\ldots	2008		Close to rillage on S. Aide. East of village near tombe of Nizám's oflicers.
Gannápur H.S. ...	\ldots	1.58	1606	
Indír rillage	...	$1{ }^{6} 5$		Clore to West aide.
Daravid ${ }^{\text {a }}$..	...	1738		Tope E. of village.
Anantagiri H.S. ...	\ldots	2311 1934	2311	
Koraralili		$193+$	1728	Foot of high Tower in village.
Mothakspalli H.s. Do. camp		$228+$ 1965	2282	
Bachinapalli	2090		N. E. of village.

Heights in Mysor, Ballári, Kadapa and the Nizám's Dominions.
" Bombay Party. Seasons 1869-70-71-72-(Continued.)

Name of Place.				Remarks and Desoriptions,
Kandenmarrei T.S.	...	2227	2240	Lower mark, ground level.
Bihilpur	...	2162		Large tope 1 mile S. of village.
Womekonda H.S....		2196	2178	
Do. camp...	\ldots	19^{87}		S. of hill.
Kúpánagar ${ }^{\text {a }}$	\ldots	2080		\pm mile E. of village on Bider Road.
Shilapali H.S. ...	\ldots	2229	2199	
Pedda Chilmaira ...	\ldots	2103		Tope E. of village and N. of road.
$\underset{\text { Do. }}{\text { Goraegat }} \underset{\text { village }}{\text { H.S. }}$...	\cdots	20.52 1963	2071	Foot of hill, village side.
Topkonda H.S. ...	\ldots	2185	2182	
Gazulgúda \quad..	\ldots	$20+6$		Camp N. of village.
Kothapalli	...	1973		By stream in tope E. of village.
Cheballah H.S.	\cdots	2201	2187	\bigcirc on low hill W. of temple.
Bakawaram ...	\ldots	1799		In plantation E , of village.
Gaganpahír H.S. ... Do. camp ...	\ldots	1995 181 18	2016	In tope near road 6 miles from Haidarabad.
Husainsavalli Dargáh	\ldots	1830		In tope, N. of road near Golkonda tombe.
Golkonda Fort ...			2024	\bigcirc on rock in fort.
Durgápahár H.S. ...	\ldots		2089	On range of low hills \mathbf{N}. of Golkonda.
Naubatpahár H.S. Do. camp...	\ldots	175	1867	Small hill between Haidarabad and Sikandrabad. S. End of Husain Ságar tank.
Mulkagiri H.S.		2007	Low hill $1 \frac{1}{9}$ miles N. E. of Lancer lines Sikandrabod.
Chár Minár ...	\ldots		1739	Balustrade ; top of minaret about 65 feet higher.
Clinddarghát Cb.		1736	Basement of pinnacle.
Balárám HS ...	\cdots		1977	Resident's flagstaff, lower cross piece.
Kisuara H.S. Do. camp	\ldots	1786	2089	N, of village halfivay to hill.
Iechmápur HL.S.	\cdots	1786	2115	N. of village halfay to hill.
Nizámpet village	\ldots	19.30		Tope S. of village.
Sadulnagar	\ldots	1724		In tope W. of road and S. E. of village.
Suldapur H.S. ...	\ldots	2089	2088	
Umdanagar	\ldots	${ }_{17}{ }^{-9} 2$		East of village.
Undol	\ldots	1637		Topo S. of Town. General Cullen 1709.
Tadmantur H.S. ...	\cdots	${ }^{186+}$	1851	

The High road from Bangalor via Gutti-Adoni-Ráichur.

Bangalor	\ldots			3131	Ronf of observatory at S. E. end of Base-Line on Gutti road.
Davanhalli	...	\ldots	2950	2956	Ground level of bungalow compound.
Chota Ballapur	...	\ldots	3023		Ditto.
Pntasamudram	\ldots	\ldots	2;13		Ditto.
Gantwarpalli	...	\ldots	2359		Varanda level.
Palsamudram		...		2237	Ground level.
Penamkonda		.	${ }_{1862}$		In tope near old dák bungalow.
Chinna Kotapilli	1433	1444	Bungalow compound.
(Darmuveram)	\cdots	...		201	Level of ground at old palace. (Old road.)
Marur		...	1269		Bungalow compound. New road.
Mundi Anantapur		...	1156	115	\bigcirc on *telseeldar's house in town.
Garuldinni		..	1080		In tope close to old bungalow.
Yeggawopalli	1068		Rond bridge parnpet $15 \frac{1}{3}$ miles from Gutti.
Qulti	1220		t mile S. E. of railway station.
Jonagiri	1361		
Patiíkonda	...	\ldots	1548		Camp close to fort wall on N . side.
Adoni	\ldots	..	1418		Camp in tope close to foot of drug. Genl. Cullen 1395.
Hulikanáva		\ldots	1201		15 miles from Adoni.
Tongábudra	\cdots	..	10.46		On N. bank E. of road. Haidarabad State. Genl. Cullen's height of Madaveram on S. bank 1089.

Heights in Mysor, Ballári, Kadapa and the Nizám's Dominions. *Bombay Party, Seasons 1869-70-71-72-(Continued.)

The Road from Sikandrabad to Gulbargah.

Sikandrabad Pattancherru	\cdots	...	1791	J791	Cistern of Barometorin Meteorological observatory. Bungalow compound. Genl. Cullon 2062.? error
Kundi	\ldots		1791		Bungalow compound. Goul. Culen 2062. ? error Ditto.
Sedáshipet	...	\cdots	1757	1758	Ditto. Genl. Cullen 1825.
Kumkonl		...	2054		Ditto.
Burra Yekali	...	\ldots	2035		Ditto.
Cherrakpilli	1980		Ditto.
Mungulghi	1943		Ditto.
Hominabad	2030		Ditto Road branches off from Sholapur road.
Kíni	${ }^{186}+$		Ditto Close to Mulómari River.
Korkotah	...	\ldots	1439		Ditto do. Bínathora River.
Gulbargah	1456		Comp at 135th milestone.

Aneroid Levels taken in the train from Gulbargah to Gutti, compared with Madras Railway values, the latter being level of rail.

The Aneroid Heighte of Trigonometrical points, though given for the sake of comparison, have ont been used. Eitch Aneroid Height, (except in the railway heights) is a mean dorived from two adjacent Trigonometrical Stations.

All these heighta are derived from ohservations taken with two gold band Aneroid Barometers (by Cooke and sons) at 9-30 A.M. and 3-30 P.M.

The olservations were corrected for instrumental crrors and also for dnily variation; this latter quantity being derived from the fixed Mercurial Barometers at Bangalor, Karnúl and Sikandrabad Meteorological Obecrvatories.
E.g. To oblain the height of Eudligi village
Height of Uderpi Drug H.S., 1725
$\begin{array}{lr}\text { Height of Udrrpi Drug H.S., } & \mathbf{1 7 2 5} \\ \text { Observed difference of height } & \mathbf{3 9 0}\end{array}$
Height of Darerkondla H.S., 1840
Observed difference of height - 610

The railway beights were taken at all hours of the day and night, and hourly variations applied.

Extract from the Narrative Report-lated 15th July 18y2-of Major B. R. BRANFILL, Deputy Superintendent 2nd Grade, in charge of the nMadras Party.

(1.) The Madras Party under my charge had not entirely recovered from the previous Recess Scoson onded 1st November 1871. unhealthy field season, when, the first burst of the N.E. monsoon being over and the computations complete, it was possible to take the field on the lst November 1871, but bad weather detained us till the loth of that month.
(2.) I may here mention that the computations of the previous ficld season's work shewed Reputed highest hill in Southern Indin. that the point Aneimudi (a high peak in the Ancimallei hills) was no less than 8,837 feet above the sea, 195 feet higher than Dodabetta in the Nilgiri hills, hitherto supposed to be the highest point in Southern India.
(3.) My instructions were to leave the Southernmost Section of the Great Arc on which this party had been engaged for three or four seasons
Party quits the Grent Are (Revision) to complete the triangulation near Mangulur. previously, and to take up the remaining triangulation of the Mangalur Longitudinal and Meridional Series, about 110 to 120 miles on each-probably two season's work.
(4.) The Approximate Series of the whole was stated to be complete, with the exception Entire Approsimato Series already completed. of two stations about the point of junction near Mangalur; but only five stations in advance of the side Nughalli-Náráyan Drug (observed in 1867-68) were built. I was furnished with charts of the approximate series, and descriptions of the five stations built.
(5.) As soon as the weather permitted, on the 10th November, the party left Bangalor, and reached Nughalli on the 17 th and 18 th marching in two parties for the sake of observing a Barometric Levcling traverse, by means of corresponding simultaneons observations with two pairs of Aneroids-the result of which, notwithstanding the unfavorable state of the weather, proved highly satisfactory, the closing error being only about 7 feet. Barometric obscrvations were also taken daily throughout the season at 10 A.m. and 4 p.m. by the main party, and by two of the assistants detached.
(6.) At the commencement of the ficld seasou I made the following disposition of the party.

I myself remaincd with the main or observing party to take the Principal observations

Disposition of party.

until Lieutenant McCullagh should becone suffici-
ently practised with the 24 -Inch Theodolite to conduct the work alone. I then purposed examining the Approximate Series in adrance, and after that to set up the self-registering 'lide-Gange at Mangalur, which had been named as a Tidal station, leaving Licutenant McCullagh to complete the final observations with the 24-Inch Theodolite.

Mr. Mitchell was directed to complete the Ammedikal polygon, of which two stations remained for selection, and then, in accorlance with my instructions to select and observe a series of triangles extending along the coast south of Mangalur as far Ponnáni in latitude $10^{\circ} 48^{\prime}$.

Mr. Norris, whose health was still bad and unable to bear the trging weather we now experienced, viz., cold wet nights with strong dry and hot N. E. winds by day, I directed to take up the station building in the low country to the west of the Ghats, and afterwards to assist me nt Mangalur, whilst Mr. Potter was sent to build the stations albove the Gháts and northward up the Meridioual (Approximate) Series, and Mr. Lascron remained as Office assistant and Observatory recorder with the maiu party.
(7.) At Nughalli H.S. I obscrved an Azimuth to δ Ursx Minoris at Western ElongaAn Azimulh observed nt Nughalli H.S. tion; and 51 (Hev.) Cephei at Eastern Elongation; which, owing to rainy and cloudy weather caused a delay of four dnys. The result of the obscrratious shews the computed Azimuth as brought down from the Calcutta Base to be $3^{\prime \prime} .774$ too great, or the olserved Azimuth in defect $3^{\prime \prime} .774$, the difference being in the same direction as, but greater in amount than that previously obtained on this Scrics.
(8.) A further delay of several days occurred, by the signal party sent to occupy the Delnys.
ascend from its inaccessible side.
(9.) But a more serious delay was met with at Sátanhalli H.S. the central station of the first polygon, where, after some days fruitless efforts to ohtain a signal from Dásáni H.S., the N. flank station, the ray proved impracticable, being obstructed by a large portion of the top of an intervening hill. I selected a new point on the Dásáni group of hills, fortunatcly without much difficulty, leaving Lieutenant McCullagh, who by this time was quite able to carry on the observations alone, to measure the new angles; but this failure of the Approximate Series cost us no less than 10 days of the best weather for observing.
(11.) The principal observations were carried on without further hindrance than that Dificult country. caused by the forests and mountainous country of the Malnád and Western Gháts, in which clouds and heavy mists frequently obscured the signals, and the distances traversed between each atation were very great, occupying eight days on the average, and as many as eleven and twelve days in two cases.
(12.) About the end of January whilst observing at Pushpagiri H. S., Mr. Potter 2nd failure of the old Approximate Series. to the failed in Kudurei-Mush H. S., the first point common Longitudinal and Meridional Series, and that his station building was at a standstill until he should receive fresh instructions how to proceed. These I sent him immediately but owing to the great distances, nearly three weeks elapsed before he could resume his duties.
(14.) In view of the somewhat small and ill-conditioned figures provided, and thinking that the number of the stations must be reduced to elusure the completion of this triangulation next season, I determined to remodel the series

Mr. MrGill's plan of Series abandoned, and Ap. prozimate Series recast. in advance, by throwing back (eastward) the side of junction and selecting a figure to the
North-East of Kudurei-Mukh above the Ghats, that should as it were, "cut of the corner," North-East of Kudurei-Mukh above the Ghats, that should as it were, "cut off the corner," leaving Mangalur to be fixed by an independent quadrilateral figure, which (latter) however had to be abandoned during the observations for two single triangles, the greater diagonal being too long for observation at that season of the year. The country being rugged and roadless, I proceeded on foot from Kudurei-Mukh to examine it to the N. E., and succeeded, with Mr. Potter's assistance, in selecting three new points of a figure by which I hope the series will be improved and abridged, and rendered capable of completion next season.
(15.) As the season was now (at the end of February) far advanced I suspended the Approximate Serics operations endod. Approximate Series work, and, having directed Mr. Potter to build the remaining stations, and to close and deliver to the civil authorities those visited and finally observed at this season, I proceeded to Mangalur for the Tidal operations, after satisfying myself regarding the connection of Mangalur pillar station with the main Series.
(16.) Meanwlile and till the end of the season, Lieutenant McCullagh with the main party had been greatly impeded in his observations with the 24 -inch theodolite by the hazy weather setting in. At Ballamallei, the sonth-

Priacipal observing hindered and finally stopped by bad peather. westernmost flank station, he was detained 15 days, at Ammedikal (central station) 18 days, and at Kudurei-Mukh 25 days, until the 1Otl May, when, as there was no hope of completing the observations before thie beginning of the inonsoon, he closed the season's observing and marched to Bangalor, where the party arrived on the 28th May, having suffered much latterly from fever.
(17.) I had instructions to set up one of the new self registering Tide-Gauges by Adie London, at Mangalur, which I accordingly proceeded to do. I found the river (Netravati)
(18.) As I could hear of no better place on the coast nearer than Kárwár (or Sadashighar) which is beyond the limits of the triangulation remaining to be done, I determined to make the attempt to establish a Tidal observa-

A Tidal observatory decided on and begm, and a masonry well sunk. tary here, although there was some room to doubt of success; and accordingly I sank a masonry well in the lighest part or ridge of the sand spit, where it was 12 feet aloove sea level and 30 yards away from high water mark on the beach, about a mile south of the river mouth, and nearly opposite the town of Mangalur.
(19.) The sand was very firm at a small depth below the surface where it was slightly moist, but exceedingly "quick" at the permanent water level below, which I saw reason to believe to be considerably higher than mean sca level. The well was begun a little above this, and sunk by emptying the sand continually from its bottom, and adding to its height, until there was always a depth of 6 fect of water or more in it, and 10 feet of masonry above high water mark.
(20.) Communication with the open sea was now established by means of wrought Communication with open sea eetablished. iron gas piping, of one inch bore, with a copper perforated nozzle, extending 40 or 50 feet beyond extreme low water mark of spring tides into 4 or 5 teet of water, the other end being introduced into the well at about the mean level of the sea, which was the lowest that could be managed even at low water, owing to the wash of the waves and the persistent high level of the water standing in the sand spit. A syphon end extending to the bottom of the well having been added to the inuer ead of the pipe, it was found that although the communication with the sea was apparently free enough about high water, at low water the pipe was iuadequate to empty the well more rapidly than it filled by percolation from the sand below. It was necessary therefore to introduce a watertight case or cistern that should only admit or deliver the sea water by means of the pipe. This proved an exceedingly difficult task, more especially so as the season of perpetual rollers from the South-Westward and a heavy surf on the coast had set in by this time, (the beginuing of April) and prevented the removal of the pipe in order to let down the case entire.
(21.) After one or two trials I succeeded in securing a water-tight case of wood A watertight cistern or case of mood introduced. (10) ten feet in depth in the required position till the end of April, and the result a of neap tides the range of the tide was too small to test the effiency of the arrangement thorouglily, when, rather suddenly, the free communication with the sea ceased; the water having shoaled and covered the sea end of the pipe with about a foot of sand.

I found that water would still flow out of the cistern freely, but that even with
Tho pipe cloked by deposit of sand. a considerable head of water outside it would scarcely flow in at all.
(22.) By this time a masonry platform with deep foundations had been built to support Mnsonry phatform completed and sell-registering the iron bedplate of the self-registering Tide-Gauge Tide-Gunge est up. to be set up, a small thatehed hut or observatory erected, aud the instrument wth clock put in position ready to start.
(23.) The severe gale of wind from the \mathbf{W} to N. W. doubtless connected with the devastaDamage by serere gale of 1st and 2nd May 1872. ting storm which occurred at Madras about the same time (1st and 2nd May,) now took place and considerably altered the shore line, washing away much of the sandspit almost up to the observatory and well, and shouling the water for some distance out to sca.
(24.) The scason of high surf was now too far advanced to do anything further, and notTidal operatione closed. withstanding the statement that the alteration of shore line and sea bed was very unusual, it seemed best to pack away the instrument safely and defer further operations till the close of the monsoon.
(25.) I regret to add that the unusual violence of the monsoon has made further encroach-

Further damage nud remoral of observatory hut. saving the materials from being lost has renoved the observatory hut, but not before much damage nud loss had occurred from the violenee of the waves.
(26.) To set up a Tidal obscrvatory and maintain it in operation for a trelvemonth on
expense, and at best so uncertain of success, that it can hardly be recommended; and I greatly fear that Mangalur must be abandoned as a Tidal Station, and a protected spot sought for. If the pipe of communication with the sea be made long enough to be beyond the line of surf and shifting bottom, the bore must probnbly be enlarged beyond a practicable limit, to ensure rapidity of action; and I doubt if any manageable length of tube will secure it from the liability to be buried or shifted on the sandy shore of the Western Coast.
(27.) I attribute the success of the Tuticorin Tidal operations just completed, (see para Renson for success at Tutukudi (Tutikorin.) 37) to the protection of the harbour and the fact that the end of the tube could always be got at and examined.
(28.) During the progress of the Tidal observatory, three new permanent stone Benchmarks were marked in the usual manner and connected by Spirit leveling with each other and with Captain Basevi's points leveled in December 1869,

Permanent Bench-marks fixed and levels deter. mined, (the results agreeing well with his), and a double line of levels was carried by Mr. Norris to the new G. T. Survey pillar Station at the Lighthouse recently built and observed at, about a mile or more distant.
(29.) On the 7th May I left the instruments \&c. in charge of the Executive Engineer at Return to Bangalore. Mangalur and proceeded to Bangalor where I arrived on the lst Juue.
(30.) The following is a brief statement of the field season's work :-(15) Fifteen Principal Brief statoment of Scuson's work. Stations were visited and (40) forty angles obscrved, fixing (10) ten new principal stations, by (11) eleven triangles embracing an area of 3239 square niiles, executed at a cost of Rs. 14 per square mile, and extending the Series above (100) one hundred miles from Dast to West across the mountain range of the Western Gháts, besides a good proportion of Secondary and incidental work; 50 Secondary points fised, spread over 2033 square miles beyond the principal triangulation; also a year's series of 'lidal curves secured, with hourly readings made and tabulated. Also a connection made by Spirit leveling between the closing station of the Series at Mangalur and eeveral Tidal Bench-marks.
(31.) I trust that you will endorse my belief that the amount of work done and progress made, has been satisfactory in spite of unusual hindrances.
(32.) I beg to point out to you that a large share of the Principal observations was done by Lieutenant McCullagh alone, and that although

Lientenanl J, R. NcCullagh, R. E., Assistant Superintendent 1st Grade. this is his first season's practice, with the $2.1-$-Inch Thcodolite, the results, tested by the computed errors, weights, and corrections, appear to be very good, and compare very well with the results of other observers in the Department. Thus the mean triangular crror, usually large (about $0^{\prime \prime} \cdot 5$) with the theodolite in use with this party (No. 1 Troughton and Simms-altered) is only $0^{\prime \prime} \cdot 33$, whilst the mean probable error of the (40) forty angles is only $\pm 0^{\prime \prime} \cdot 14$, the mean of the 7 previous scasons being $\pm 0^{\prime \prime} \cdot 18$. I consider these good results are due in a great measure to Lientenant McCullagh's extreme care and aptiturle for the work. 'This officer was attached to this (the Madras) party in October, just hefore taking the field, in a bad state of health from which he recovered but slowly: during November, December and Jautary he took a large slare of the office aud observatory work, the details of which he soon mastered, and from lst February he had sole charge of the main or observing party which he conducted to my satisfaction to the end of the Field scason.

I am greatly obliged to Lieutenant McCullagh for the very willing and able manner in which he carried out my wishes, and I have much pleasure in stating that I consider him in every way fit for the sole charge of a Trigonometrical party.
(33.) Mr. Mitchell's outturn of work is as follows:-Two Principal stations selected Mr. J. W. Mitchell, Assistant Surveyor 1st Grnde. and cleven Minor Series stations, forming a single Scrics of eleven triangles, extending about one hundred and tmenty miles along the coast to the South of Mangalur and bridging the gap left at this place in the chart of Colonel Lambton's triangulation. He obscrved the angles at five of the southernmost stations. The mean error of the two triangles observed is $7^{\prime \prime} 3$. So large an error must be attributed to the extremely unfavorable state of the weather during the obscrvations. Mr. Mitchell also finally closed one Principal station and kept up a scries of Barometric observations throughout the scason, and only reached Bangator on the 8th June suffering much from sickness.
(34.) Mr. Norris has built three Principal stations with ordinary platforms, one masonry Mr. O. V. Norris, Abst. Surveyor 3rd Grade. pillar ($11 \pm$ feet high), two wooden observatory platforms (10 and 12 feet high), cleared some two miles of rays, exccuted one or two miles of Leveling, and finally closed two of the Principal stations. Mr. Norris was ill when he took the field, aud frequently suffered from fever. It was on this account that I sent him at once to the low country near the sea, in the hope that his health would improve, and I believe it did so, but he was very frequently unfit for work and unable to bear much exposure in the forenoon and middle of the day.
(35). Mr. Pottcr las done a good season's work in spite of unusual difficulties. He has Mr. C. D. Potter, Asst. Survejor 3rd Grade. built, and well built, seven platform stations all on the top of high hills or mountains, finally closed five, and has selected one principal and six secondary stations, clearing and making 12 miles of pathway. Nearly all his work being in the mouutainous country of the Western Ghaits and MaInád of Mysor, labor and materials were only procurable with much difficulty and delay. Mr. Potter took a serics of Barometric observations throughout the season, and his weekly diaries, reports with sketch-charts, observations and monthly papers were always well done, and sent in with regularity and in a worknanlike style. He and his party suffered very severely from fever in the Field. I have much reason to be pleased with Mr. Potter's conduct and beg to bring his name to your notice for favorable consideration.
(36). Mr. Laseron as Office assistant and Observatory recorder has worked well, and Mr. E.W. Laseron, Aseistant Surrejor 4th Grade. I have cevery reason to be satisfied with him. The augle books, field computations, and office records, lave been duly kept up with neatness and regularity. Mr. Laserou's capacity, attainments and willingness are greater than the mere performance of his duty requires, and his conduct is as already often reported, uncsceptionable. He has served well for more than threc years in the Department aud I therefore beg to recommend him for promotion on the first opportunity occurring.
(37). In addition to the Trigonometrical work detailed above, I have to report the The Tutukudi Tidal Observations completed. completion of a year's Tidal Observations at Tutukudi.
In May 1871, I set up a self-registering Tide-Gauge (No. 1 by Adie, London), checked its performance by means of a temporary Gauge and connected it with the permanent Benchmarks previously provided for the purpose.

Captain G. A. Phipps, Master Attendant for the port of Tutukudi most kindly undertook the duties of tidal observer, daily dating the curves traced, winding the clock weekly and keeping it right, and, changing the sheet of paper on the drum every fortnight, whilst the services of a native writer were retaiued for the daily register of anemometer, bardmeter, and thermometer readings, and a copy of the metcorological notes made in the Master Attendant's office. The level of the instrument was re-tested in November 1871, and again at the end of the ycar's work in Jume 1872 when Lieutenant McCullagh was deputed to examine, test, dismantle aud pack up the instrument. This duty he carried out to my entire satisfaction, thus closing what I trust will prove a most valuable and accurate register of the sca level. I have taken hourly readings of the registered curves, as well as readings of every ligh and low tide through the entire period. A special report will be sent in as soon as the preliminary reductions have been made and tabulated, but I take this opportunity to express my great obligations to Captain Plipps for his uniformly ready assistauce, aud for his constant attention so freely accorded.

Extract from the Narrative Report-dated 29th August 1872-of Captain W. J. Heaviside, R. E. Ofllciating Deputy Superintendent 3rd Grade, in charge No. 4 Extra Party.

(1.) The Party reached Head Quarters, Delira Dun, from Tibet on the 19th of Scptember 1871. Mr. J. B. N. Heunessey, Deputy Superintendent lst Grade, was then in charge.
(2.) For some six weeks nfter the arrival of the party in Dehra, Mr. Hennessey, with Mr. Macdongall's assistance, was occupied in arranging the affairs, and sorting the papers of the late Captain Basevi. This was no light task.

Owing to the sudlen nature of Captain Basevis' death, in a place where the facilities for enrriage were most limited, and where he had none of the conveniences afforded by an office; it was but to be expected that his private and professional papers would not be sorted. Moreover, he alone, in India, was thoroughly conversant with the pendulum operatious : and the computations for the last stations at which he observed had not been completed. It was, therefore, most essential that every record which could throw eny light on the smallest detail of his delieate and valuable operatious should be preserved : not only as a guide for his successor, but, also, that none of the hard earned results comected with his memory, should be lost to posterity. With this end in view Major G. H. Basevikindly permitted all the properties, both public and private, which Captain Basevi had with him at the time of his death, to be brought to Dehra intact. There were also other hooks, papers \&c., which had been left at Dehra. These werc all carefully gone through ly Mr. Henuessey who was thus enabled to collect all records and notes which Captain Basevi had preserved in the course of the operations from 1865.
(3.) After the papers had been sorted, the instruments were examined. The knife edges of the Pendulums were well oiled, and the whole apparatus carcfully packed away.
(4.) Mr. Macdougall then took up the reduction of some of the pendulum observations. He afterwards assisted in the Computing Office for about 2 months.
(5.) At the time of Captain Bascvi's death I was in England on furlough. Being offered the charge of the party, with a vicw to completing the pendulum operations, I left Eugland aud arrived in Delira on the 11th of April.
(6.) I took over charge of the party from Mr. Hennessey and on the 20th of April the party moved up to Masúri.
(7.) The pendulum obscrvatory at Masúri had been recently used for base-line bar comparisons. The removal of frame-works and pillars from the obscrvatory, as also filling up the pits into which the bars had been lowered, occupied some days. During this time the vacuum cylinder was opened out, cleaned, painted, and made as air tight as possible. It was then found that the frame-work and arrangement of the apparatus, as used in the plains of India, harl been somewhat modified by Captain Basevi to meet his requirements in the high table lands of Tlibet. A certain amount of reconstruction was therefore necessary. Captain Basevi has left a detailed account of the methods he cmployed in observing, and, also, drawings of the different parts of the apparatus. But there are many little details connected with the work which are only to be learnt by experience. For instance, the large air pump was not taken to 'Tibet and had lain by some time; it required thorough cleaning, when put together and set to work it was some days before the proper size of the piston wads : the right length of the stroke: and the correct adjustment of the valucs was hit upon, so as to reduce the pressure in the cylinder below one Inch. There were similar delays with other parts of the apparatus and eventually the raius commenced before every thing lad been got into thorough working adjustment.

So long as the fine nights lasted, I occupied myself in comparing clocks and chronometers, and in taking transits of stars.
(8.) During the recess, I have becn engaged in arranging my predecessor's papers under healings; and in becoming acquainted with the methods he followed in observing and in computing out his results. I have also practised clock comparisons, observing coincidences with the pendulums, and other details connected with the work. I think I have now attained sufficient knowledge of the operations, to enable me to commence a regular set of observations at Masúri, so soou as the rains cease.
(0.) Mr. Maclougall has been chiefly employed during the recess in making duplicates of the Pendulum computations. He has afforded me assistance by his knowledge of the forms of computation and of the places in Captain Basevi's books, where tables \&ce, are to be found.
(10.) I am greatly indebted to Mr. Hennessey for the corrial assistance, and for the many useful hints he las given me in the course of my work. Mr. Henncssey was associated witl Captain Basevi, in determining many important matters connected with the Pendulum experiments, and his knowlelge has, therefore, been to me iuvaluable.

Extract from the Narrative Report-dated 15th August 1872-of H. KEELAN, ESQ., Officiating Deputy Superintendent 2nd Grade, in charge Bilaspur Meridional Series.

(2.) The party left Chanír (Chunar) on the 19th of November to resume the operations on the Biláspur Scries; and arrived at the Tower Station of Pathaidi on the 17 th December, where it was required to observe the verificatory Azimuth, which could not be obtained at the close of the operations of 1870-71, owing to unfavorable weather.
(3.) On the following day the 18 th the thatch roofing was removed, and the tower found in excellent preservation. On the 20th the observations to δ Ursæ Minoris were begun, and finished on the 26th of December.
(4.) Immediately on my arrival at Pathaidi station, I instructed Mr. Surveyor L. IF. Clarke to proceed without delay to the stations of the pentagon formed round the station of Charkadi, to clear all the rays and commence the preparation of materials for the construction of the towers of the figure, during the abseace of, and whilst I retained the services of Mr. H. F. T. Kcelan to assist in the star observations at Pathaidi, in consequence of the inexperience of Mr . Probationary Assistant Surveyor H. Healy in observatory duties: he having recently joined the department.
(5.) On the completion of the Azimuthal Observations, I instructed Mr. Surveyor H. E. T. Keelan to relieve Mr. L. H. Clarke of the work entrusted to him; whilst I proceeded myself, to the stations on the eastern Hank of the series to build the platforms and cut the roads to them: Mr. Clarke meanwhile, was ordered to clear the rays and prepare materials for the tower stations forming the two quadrilaterals with the hill points.
(6.) After finishing the platforms at the hill stations of Silighát, Chapora and Khalári, I retraced my steps northward to begin the final observations; but, owing to numberless difficulties to be surmounted, the towers of the Charkádi pentagon were not ready before the 20th of lebruary, when observations were commenced; and by the end of the month were completed at the tower stations of Bardha, Latúa, and Gúma.
(7.) During the month of March, final observations were completed at the tower stations of Charkádi and Jerwa, at the hill station of Silighat, and a few zeros at the hill station of Chapora.
(8.) During the month of April, final observations were completed at the hill stations of Chapora and Klialíri, and the tower stations of Achola and Mahásamand; after which, I proceeded to crect the rectangular pillars, and transfer the care of the hill station platforms of Silighát, Chapora and Khalíri, to the village officials. I then crected a substantial thatching over the tower of Mahásamaud, and marched with the camp to Jabalpur to recess the establishment.
(9.) The season's final work consists of one pentagon and two quadrilaterals. The Approximate Serics, extending about 60 miles from the North, on the base Mahasamand to Khalari, consists of 4 , quadrilaterals, and completes the junction with the triangulation brought up from the South, on the base P'endra IL.S. to Dcopahír H.S. of the Bitáspur Series. And lastly, the Minor Triangulation to determine the position of the Civil Station of Raipur.
(10.) In the prosceution of the scason's work, it was foumd, that owing to the character of the Chattísgarh district, through which the Bilaspur Scrics passes, being of a wild nature, there existed no buildings or temples or other permanent objects to fix. The inhabitants, who are chicfly aborigines are content to dwell in huts huddled togrther, in smaller or larger groups bearing a mame. Oceasionally may be seen a demolished Budhist temple in the depthe of a dense forest, on sites where in some remote period cxisted a large brick, or stone built town; so that there are no objects in the country to observe to, and therefore, no secondary points were determined from the principal stations of the series, except one buideng, the large modern temple of Bandhar-crected recently by a sect who emigrated from the north into these provinees about a humdred or more ycars ago. On this account, I detached Mr. Sutveyor II. E. T. Keelan into the moreopen part of the district to the westward, to determine the position of the Civil Station of Ifáipur, as woll as to lix as many buildings, temples, de, as he could manage to see along the course of the Minor Triangulation. But even here, the country was quite devoid of buildings.
(11.) Mr. Surveror L. H. Clarke was, ns already mentioned, detached from the station of Pathaidi with instructions to clcar the rays and prepare materials for towers of the Charkádi pentagon; when on the 30th of December he was relieved by Mr. Surveyor H. E. T. Keelan, and orlered to procecd upon similar work connected with the stations of the 2 following quadriaterals, all of which he did satisfactorily; and by the 20th of February completed the towers of Achola and Mahásamand, when he received fresh orders to proceed without delay and extend the Approximate Serics southward, on the base Mahásamand T.S. to Khalári H.S., as directed in the following extract of my letter of instructions to him on the subject, dated 22nd February 1872.
"The series will be composed of polygons; and it will be advisable to select at " least two figures in advance in the direction of the parallel lincs indicated in the plan fur" nished you; so as to form a satisfactory junction, if practicable, during the present season, " with the approximate series now being carried up by Mr. Surveyor H. Beverley from the "south, and with whom you must put yourself in communication and exchange plans of figures " selected from north and south."
(12.) Mr. Clarke lost no time in this undertaking, and I was glad to find that by the end of March he had formed the desired junction upon the base P'endra H.S. and Deopalár H.S. by means of 4 quadrilaterals. On the whole Mr. Clarke has done a good season's work; and I deem it necessary to bring the same to your favorable notice.
(13.) Mr. Surveyor H. E.T. Keelan was first of all empioyed in assisting at the circumpolar star observations at Pathaidi Tower Station, on the completion of which, I directed him to relicve Mr. Surveyor L. H. Clarke of the duties on the Charkádi polygon; and uotwithstanding the great difficultics he had to encounter, especially in the supply of water to build the towers, which, in most cases, had to be carried to the spot from long distances, he completed all his towers by the 20th February. I next instructed him to extend a Minor Triangulation to fix the position of the Civil Station of Ráipur, upon the base Achola T.S. to Mahásamand T.S., which he completed by the 12 th of April, and joined my camp on its march up to Jabalpur shortly after.
(14.) Mr. Assistant Survesor H. Healy, who joined this party on his appointment to the Survey in October, was daily instructed in the use of the small theodolite on the march from Chanir to the Central Provinces, and was subsequently sent under Mr. Clarke's orders to be instructed in ray tracing and clearing, until his services were wanted in the observatory. This young assistant I am glad to state readily became familiar with the work required to be done in the observatory and office, and promises in due time to become a useful hand.
(15.) The following computations appertaining to the Bilispur Series operations were completed during the recess of 1871.
I. The duplicate copies of Principal and Secondary Horizontal and Vertical Angles completed-means and angles delluced and compared with their originals.
II. Computations of 36 weights of angles, in duplicate.
III. Polygonal computations of the Gathaora and Pathaidi hexagons, in duplicate.
IV. Computations of 14 Principal Triangles in the above polygons, in duplicate.
V. Computations of Latitudes, Longitudes and Azimuths of 10 Principal Stations, in duplicate.
VI. Computations of Heights of 10 Principal stations, in duplicate.
VII. Computations of 10 Sccondary Triaugles, Latitudes, Longitudes, Azimuths and Heights of the Biláspur, Ratanpur and Bisrímpur Minor Triangulation, in duplicate.
VIII. Preliminary Chart for season 1870-71, on the scalc of 1 Inch $=4$ Miles, with nuiucrical data inserted thercon.
(17.) During the past ficld season a great deal of malarious fever prevailed amongst the men of the Establishment; and the Assistants, as well as myself were not exempt from it. The country is of a wild character; and it is more so southward.
(18.) The total expenditure during the official year 1871-72 is Rupees 40,333-10-9. The total area triangninted is $\mathbf{G} 5 \overline{5}$ square miles, and the average cost per square mile is Rs. 62-8-11.

Extract from the Narrative Report-dated 30th August 1872-of Captain T. T. GARTER, R. E., Depuky Superintendent 2nd Grade, in charge No. 3 Extra Party.

(1.) On the retirement of Mr. C. Lane, Deputy Superintendent 2nd Grade G. T. Survey, on the 3rd of October 1871, and pending the arrival of an officer of the Senior Department, the charge of the party was held by Mr. A. W. Donnelly, Surveyer 2nd Grade G. T. Survey, and under his orders the party left their recess quarters at *Benares on the 8th of November, with the view to commencing operations at the G. T. Survey Bench-mark at Parsoni, embedded $\frac{3}{5}$ of a mile from the village of Parsurman, on the road (under construction) from Muzaffarpur to Purniah, the terminal point of last season's work.
(2.) On taking the ficld, Narsing Dás Native Surveyor was in charge of No. 2 Level, pending the arrival of an officer to the permanent charge of the party.
(3.) The programme of operation as laid down by the Superintendent in his letter No. $\frac{16}{1362}$ dated the 27 th of October 1871 was as follows:

Superintendent's instructions. From the $\frac{\text { G.T.S. }}{\text { B. M. embedded at Parsoni near the vil- }}$ lage of Parsurman to continue the line of levels viâ Sáhibganj (Náthpur) to Purniah, connecting with the Great Trigonometrical Survey tower stations of Rámnagar aud Dighi and such others as might be conveniently near the maiu line of levels. From Purnial to carry the line down to Karágola ghát, cross the *Ganges river and effect a junction at the G. T. Survey Beuch-mark at the Pírpanti Railway station E. I. Railway, thereby completing the circuit from Gorakhpur to Pirpanti. After this to commence a fresh circuit from Purniah, and after connecting with the base-line stations of the Soualkhoda base, to continue the operations down the road from Titalía to Dińijpur, comnecting with the stations of the *Calcutta Meridonial Series.

(4.) Mr. Donnelly arrived at Parsurman on the 11 th of December, and after the customCommencement of work. ary tests had been made to ascertain the stability of the Beach-mark embedded at the close of the previous season's work, and after the level staves were compared with the portable Iron standard bar and the collimation of the levels themselves examined under Mr. Donnelly's directions, work was commenced on the 13th of December from the Great Trigonometrical Survey Benchmark at Parsoni.
(5.) I arrived at *Bornbay on the 16th of December from one year's leave to England on Captain Carter takes charge. private affairs, aud there found instructions to proceed to Purniah and take over charge of the party; arriving at Purniah on the 25th of December, I placed myself in conmunication with Mr. Donnelly with the vicw to ascertaining the point up to which the operations had beeu carried, and what progress the work had made; on receiving his reply I was enabled to join his camp aud took over charge from him on the 8th of January 1872.
(0.) From the 13th of December to the 8th of January Mr. Donnelly had completed

Progress of the work under Mr. Donnelly's supervision. 64 miles of double leveling. Starting from Parsoni G. T. Survey Bench-marlk the main line had been carricd to Singesar Thán, from which point a branch line was taken to fix a permanent mark in the small civil station of Madahpur. From Singesar Thán a branch line was also carried to the Kotganwah Factory at which point it broke into two lines, one proceeding south; conuecting the tower station of Dighi. Another north connecting the tower station of Rámagar ; returning to Singesar Thín the main line was continued in the direction of Náthpur, as far as Latona village connecting with the tower station of Latona. From Latona village the leveling for the rest of the season was carried on by myself using No. 2 level (hitherto used by Narsing Dás) and Mr. Donnelly using No. 3 level; the Native Surveyor whose leveliug had been very satisfactory, returning to his ordinary duties of recorder.
(7.) From Singesar Thán the main line of levels were carried across country following Leveling arross country. and Pratálganj, during this portion of the village of Dewánganj on the road hetween Sapol being impossible to take observations at long the prugress was considerably delayed owing to its the atmosphere duc to the high grass through which the levels were taken.
(8.) From Dewainganj the line was (after connecting the tower station of Dewánganj) carried along the road to Pratáloganj and thence to Sáhibganj on the left bank of the Kosi river, the river being crossed at this point, thence continuing along the road to Purniah, connecting en-route with the tower station of Ghiba of the N. E. Longitudinal Series.
(9.) At the request of the Collector of Purniah a number of paka points were fixed in

Pakn points fixed at Purniah.
the vicinity of the station to serve as checks on proposed leveling operations to be carried out by the municipal authorities, connected with the draining of the station; values above sea level and a chart shewing their position were made over to the civil authoritics.
(10.) Proceeding from Purniah the main line was continucd along the road to Karágola ghat at which point the river Ganges was crossed, thence viâ the village of Pirpanti to the G. T. Survey Bench-mark at Pírpauti Railway station fixed by Lieutenant Trotter R.E. in 186\&, completing the circuit from Gorakhpur to Pírpanti on the 20th February.
 which error to prevent disturbing the valucs as given in tables already published has been provisionally distributed between Parsoni and Pírpanti. Neglecting the circuit error at Cawnpur and at Dildárnagar the difference of level between Pirpanti (i. T. Survey Bench-mark as determined by Licuteuant Trotter R.E. in 186-1 and that now determined would be $0 \cdot 23$ feet.
(11.) On the line from Parsoni to Pírpanti 97 bench-marks were fixed, of these 5 were Bench-marks fixed. bench-marks of the ('. 'T. Survey pattern embedded in the vicinity of trigonometrical stations as directed
in Superintendent's memo No. $\frac{19}{1577}$ of the 19 th of December $1871 ; 4$ embedded bench-marks (with pillars built to indicate their position) viz. at

Gaumanti, $\frac{1}{2}$ way between Purniah and Náthpur.
Purniah civil station (Collector's Kacheri).
Near 14th iron mile post from Karágola ghát.
Karágola ghát (Post office compound).
of the remainder 59 were paka points, such as wells, temples, \&c, on which the letters $\frac{\text { a.t.s. }}{\mathrm{B}} \mathrm{A}$. were engraved at point where staff was placed; and 24 were iron mile posts on the road from Karágola ghát to Purniah, the staft resting in all cases on the top of the post.
(12.) Some difficulty was experienced in carrying the levels across the river Ganges the

Crossing the Rirer *Ganges.

 the ordinary divisions of the leveling staves conld and half-tenths and then attached to the read with any degree of accuracy, except in the early morning and towards sun down, at which times the refiaction is greatest. By multiplying thic number of observations and taking morning and evening sets on two consecutive days, alternating the orfer of olservation on the second day the difference of level between the right and left bank of the river was as follows.$$
\begin{array}{lll}
\text { By Captain Carter No. } 2 \text { level (mean of 54 olservations) } & \text {. } & 3 \cdot 380 \text { feet. } \\
\text { By Mr. Dounclly No. } 3 \text { level (mean of 5-1 observations) } & \text {.. } & 3: 338 \text { feet. }
\end{array}
$$

(13.) On the completion of the circuit from Gorakhpur to Pirpanti, the party marched

New circuit from Purninh.
back to Purnial and commenced a new circuit from the (i. 'I'. Survey Bench-mark at the Protestant church along the main road form Purniah to Darjiling as far as the Rímgan tower station at the N. E. end of the Sonakhoda base-line, the tower station of Sonikhoda at the S.W. cud of the base-line being also comncted; the work was closed for the scason at the G. 'I' Survey Bench-mark cmbedded in the vicinity of the Kámganj tower station on the gend of March. The length of this portion of the season's work was $f 8$ miles and on this line fonch-marks of the G.' 'I'. Survey pattern were embedded and pillars built to indicate their position viz. at

The encamping ground of Belgachi

$$
\begin{array}{ll}
\text { Ditto } & \text { Assuragarh } \\
\text { Ditto } & \text { Ghaisal }
\end{array}
$$

and at the trijunction of the village lands of Singdhai, Bagaligach and Magdama, near the 9 th mile post from Karígola glaít, besides these 17 paka points were fixed and $5 \mathbb{C}$ iron mile posts.

The leveling was closed for this season at the Rámganj Tower station on the 22 nd of March, the party arriving at Purniah on its return march on the lst of April ; after making arrangements for the safe custody of the instruments. Government stores \&c. at Purniah, and furnishing the civil authorities with values of the points fixed in the vicinity of Purniah, as above mentioned, it arrived at Sáhibganj the ncarest station on the E. I. Railway, on the 10 th April, en-route to Head Quarters Dehra Dun, the native establishment (with the exception of 7 men left in Purniah in charge of the Government property deposited there, and a few men required at Head Quarters during the recess) being permitted to procced on leave with orders to be at Puruiah on the 10th November 1872 by which time the country will have sufficiently dried up after the rains, to permit of the operations being continued.
(14.) Before leaving Purniah for recess quarters, receipts in duplicate for all paka pillars, indicating the positions of embedded Benchmarks were drawn up and delivered to the civil anthorities with the view to these permanent marks

Custody of Paka pillars indicating position of Bench-muths. being made over to the safe custody of the owners of the ground on which they are built, as in the case of Tower and Platform stations of the (\mathbf{r}. T. Survey as laid down in Departmental order No. 1 of I5th January 186G, the receipts for these pillars duly signed have been received from the Magistrate and Collector aud have been made over to the Officer in charge of the Computing office, the duplicates being retained by the person in charge of the pillars.
(15.) During the season's work the following Tower Stations of the Great TrigonoState of 'Trigonometrical stations conmected. metrical Survey of India werc connected viz:

		Heights of remaining Portion of Paka Pillar
Dighi T. S. (N. Malúncha Series)	.. .	$7^{\prime} 8^{\prime \prime}$
Rämnagar I'.S. (N.E. Longitudiual Scries.)	. .	$13 \quad 9$
Latona I'S. (Ditto ditto)	. ${ }^{\text {- }}$	270
Dewánganj T.S. (Ditto ditto)	. \quad.	14.0
Ghiba 'I'S. (Ditto ditto)	.	80
Sonákhoda T.S. (Ditto ditto)	Sounkhoda Busc-line	Perforated Towers
Rámganj T.S. (Ditto ditto)	stations.	complete.

a statement as to the state of these towers will not be out of place here; the lat five are of the old pattern towers, namely solid masonry pillars in the centre of mud built towers, in all these cases the kacha part of the tower has fallen, and only so much of the paka pillar remains as given above, under these circumstances the only means of conncetion was by digging into the paka pillar, about the ground level and reaching the ground level markstone.

The 'Towers at the ends of the Sonálhoda Base-line viz: the Soníkhoda and Ramganj stations were found ingood order, with the exception that the arching over the mark at the Rímganj end was broken in and the mark exposed, this was built over again. The towers were carefully closed, the walls eleared of all shrubs \&c. and whitewashed.

Oul-turn of work.
(10.) The total out-turn of work during " the season has been as follows viz:

245 miles of double leveling.
7 Trigonometrical stations connected.
16 G. T. Survey Bench-marks embedded and connecterl.
8 Paka Pillars built indicating positions of embedded Rench-marks.
76 Paka points fixed and the letters $\frac{\text { C. T. S. }}{\text { B. }} \mathbf{\pi}$. engraved thereon.
80 Iron mile posts connceted on road from Karágola gláit via Purniah to Dírjiiling.
(17.) Drawings shewing the position of the leveling staff at 53 of the 76 Paka

Drawing of Bench-marks.
panying this report.
(18.) The line of levels protracted on the scale of one mile to the inch will be completed shortly and will then be forwarded.
(19.) In conclusion I beg to bring to your notice that during the time Mr. Donnelly was Conclusion.
has assisted me to my entire satisfaction.
The Native Surveyors Amjad Ali and Narsing Dís, have worked hard and in every way deserved my approval.

The health of the party was very good.

Extract from the Narrative Report-dated 27th August 18\%2-of Major C. T. HAIG, R. E., Officiating Deputy Superintendent 1st Grade, in charge Guzrat Party.

(2.) I received charge of the Party from Lieutenant McCullagh, R.E., on the 23rd September 1871 on my returu from England from two years sick leave.
(3.) Captain Pullan and Mr. Connor joined after we had taken the field, the former on 18th December, and the latter on 5 th Novernber in place of Mr. A. Bryson who had come with us to Súrat lout was then transferred to Captain Campbell's party. On taking the field I also had Mr. Goslin as au assistant, but he left me on 15th December, having sent in his resignation.
(4.) Bcfore reporting on the work done this year it will be as well to state briefly what had been done previous to my taking charge. The whole of the operations of the party were confined to six consecutive Shects (30^{\prime} Longitude and 15^{\prime} Latitude) on the same meridian, excepting, by the way, 5 stations selected and built by Lieutenant Baird, R.E., for a Series of triangles to be rum along the course of the river Mahi. Of these six sheets, numbered from 8 to 13, one only (No. 12) had been mapped; No. 8 had been three-quarters covered with net work triangulation and ready for plane tabling; Nos. 9 and 10 had been half got ready; Nos. 11 and 13 had been got ready with the exception of about the space of one plane table, i.e., one eighth of a sheet in each.
(5.) The index map therefore, on which all work done was conventionally indicated, presented rather a patchwork appearance; but this was owing to the extreme difficulty of triangulation in a dead flat country studded with trees varying in profusion from that of an English park to that of a dense forest, so that almost in no instance had a triangulator completed in a field season the portion of work expected from him.
(6.) This was especially the case too in the laying out of the Mahi Series of triangles alluded to above, and although the length of the Series is but 64 miles and it had been worked at for two field seasous, only 7 stations had been selected covering altogether about one-third of its extent.
(8.) Three shects $(8,11,13)$ this year have been topographically surveyed, the blank halves of shects 9,10 and also a fresh sheet (14) have been prepared with points ready for plane tabling, so that the index map were it not for the unfortunate loss of a plane table would now present a most orderly appearance, though I am sorry to say it does not admit of any greater out-tura of topography next season than that of this year which is however tolerably fair.
(9.) The lost plane table was being brought to Pína from the field by Mr. McA'Fee. In *Bombay while looking after the sate removal of some theodolites from the Railway van the tin case containing the original plane table must have been carried off by one of the coolies thinking it belonged to another passenger. Mr. Moa'Fee took all the means he could think of to recover it, invoking the assistance of the Commissioncr of Police and offering a reward of Rs. 50 , but hitherto it is still missing.
(10.) I now proceed to details. The Party left Pína on the 23rd October for Súrat where the tents, instruments and field equipment had been stored. At Súrat miscellaneous work, such as preparing and projecting plane talles and bringing up sundry arrears, occupied us till about the 10th November, when, laving started off the Assistants to their respective duties, I left for *Kaira visiting Bhroch (Broach) and *Baroda to acquaint the Civil authorities of the general programme of the season's work as far as it concerned their respective districts.
(11.) At *Kaira I took up the question practically regarding the feasibility of utilizing the maps of the Revenue Survey which has been the subject of theoretic discussion since 1867. 1 have alrcady reported at length in my No. $\frac{8}{82}$ dated 26 th January 1872 on the results of my juvestigations : suffice it here to say that I connected, by traversing, with our triangulation two points in the boundaries of screral alternate villages (by olternate I mean separated from each other by one intervening village): I then projected these fixed points on a planc table and with a pentagraph tracel ont on the plane table from the Revenue Survey maps each village, making the corresponding points on the Revenue maps tally with their respective counterpoints already laid down, then 1 attempted to fit in between the alternate villages thus projected the boundary of the intervening villages from the Revenue Survey village maps. I found, and I was quite prepared to fud, that I was attempting an impossibility, but in this way I determined cxactly what amount of labour would be entailed in compiling a general map from the Revenue Survey village maps and also the legrec of accuracy in the maps thus obtained, and I have as stated above fully reported thereon.

(12.) At *Kaira I was joined by Captain Pullan to whom I had intended giving some triangulation in sheets 6 and 7 for which I had prepared a field chart with all the stations of the Abu Meridional Series included in those alheets projected on it, but I was obliged to abandon that plan on account of Mr. Goslin's leaving, so I entrusted Captain Pullan with the topograly of Sheet 8. Being an old Kumaon and Garhwal surveyor, he soon brought his experience into play though his work was something new to him, for in place of having several pole and brush marked hill tops continually in view, as is the case in hilly country, here, after leaving a trigonometrical station it requires a keen search on the part of the surveyor to find a spot where he can cven see two of his points, so that a very great proportion of the work has to be done on the back and forward ray principle. The scale too was new to him, but he soon got into full swing and then trained a Native Surveyor Bhaw Govind, who had never used a plane talble before. He had also working under him Shaikh Kúsim a Native Surveyor of 4 years standing, and both of these men are very favorably reported of by Captain Pullan. Shailth Kásim turned out 172 square miles, and Bhaw Govind 109 square miles which is very fair for his first season and it is moreover extremely neatly drawn. Captain Pullan rigorously examined their work and found it throughout most exact. Captain Pullan himself turned out 242 square miles in his own good stylc. As he did not commence work till 26th December and Bhaw Govind independeutly not till 25 th January, it was necessary towards the close of the season to send him a reinforcement in order to secure the completion of the Sheet so I gave him assistance which relieved him of one out of his cight plane tables. It is this plane table that has been lost.
(13.) Mr. D'Souza started on his work on 1st November and worked away assiduously, covering Sheet 14 with trigonometrical points, until llth May when he had fixed and taken angles at 98 new stations besides observing also at 13 old stations. His triangulation extended also over above one-eighth of Sheet 15 . His work lay in a country thickly studded with villages each of which is a plantation of cocoanut trees, and the villages are so close together that it was generally impossible to lay out triangulation of more than $1 \frac{1}{2}$ mile sides, a large portion indeed of his sheet is a forest of cocoanut trees. The number of stations he visited (111) being on the average 18 a month, and the average of his triangular error $8^{\prime \prime}$ speak as to the quantity and quality of his work. Though the area covered by him cannot compare with that ordinarily covered in a season by Mr. McGill in the adjoining *Kattywar Survey, still it is very creditable considering the extreme flatness of the country combined with the almost uniform obstruction of the cocoanut trees. In the course of his work, he extensively connected stations of the Súrat city survey with his triangulation which will enable me to prepare a very accurate map of Súrat without much labour. At the close of the season Mr. D'Souza also inspected and tested a couple of plane tables sketched by Luxumon Ghorpuray and Vital Vishnu.
(14.) Mr. Cliristie was placed in charge of the Mali Series of triangulation, which he has completed after a season of almost continuous tardy up hill work beset with the obstacles of a dense forest through which most of his rays had to be cut. As before mentioned several of the stations of this Series had been selected, rays partially cut and some of the stations built before this year, so that Mr. Christic was in a measure committed to take in hand and complete a lot of half finished work which had previously been left unfinished owing to the great difficulties of clearing rays through dense jungle and to the opposition of the Gaikwir's subjects; 6 stations had previously been selected at the south end of the Scries and 5 at the north, and out of the 22 rays between these stations 8 had been cleared aud 1 partially cleared. But these triangles had too long sides, they varied between 7 and 10 miles and it is impossible to know whether a ray of that length merely determined by signal fires crossed a village midway or not. Mr. Christic found one of these rays that had been previously partially cleared was quite impracticable owing to its crossing a village in the forest and it was also impossible to shift the ray slightly on either side, for the latent village was one of three in echelon, so that a complete change in the arrangement was necessary cutailing the rejection of 2 stations and 4 rays which he had nearly cleared. Mr. Christie, apprehending this danger of determining rass by signal fires, laid out the new rays after this on the ray trace system, but as soon as he got clear of the previously selected stations he contracted the width of the Series by shortening the sides so as to take as much advantage as possible of the open space of the river itself. By this means aud with the assistance of Mr. McA'Fee during the months of May and June, he succeeded in completing the Scrics. That part of it which is entircly his own, though double the length of the portions at the extremities put together only occupied him four months in selecting and clearing whereas he was occupied $3 \frac{1}{2}$ mouths on that part which was supposed to have been already laid out. The final angles he observed with a $10^{\prime \prime}$ Theodolite by 'I'roughton and Simms working to two pairs of Zeros $\frac{0}{180}$ and $\frac{30}{210}$ using luminous signals throughout. There is however one slight inconsistency in the Series. The observations at one station (i.e. two angles) were taken by Mr. McA'fice with a 6 -inch 'Troughton and Simms' Theodolite. This happened through the extreme difficulty of crossing thic Malii which was much flooded, and Mr. Christic
thought it best as Mr. Mca'Fee was on the other side of the river for him to take the observations and save probably a week in the completion of the scrics. It was then near the end of June. The side of emanation is Poida-Ghorárío of the Guzrat Longitudiual Seriesa Principal Scries run by Lieutenant Nasmyth with an $18^{\prime \prime}$ Theodolite-and the side of verification is Sarod-Duharan of the Guzrat Coast Series-a Secondary Series run by Mr. D'Costa with a $12^{\prime \prime}$ Everest 'Theodolite.

The following Tabular Statement will shew at a glance the quantity and quality of his work.

Stations Selected,		11	
Miles of ray cut, ..				149	
Ditto trace traverse,		\cdots		36	
Stations obscrved at,				2	
Triangles with 3 observed angles,		.		23	
Intersected points,		\cdots			
Heights fixed,	.	\cdots		20	
Mean Triangular error,	\cdots	\cdots			3
Error of closing (side $=5 \cdot 4.93$ miles),		\cdots			3 feet.
Length of Series,	\cdots	\cdots	\cdots		miles.
Area Triaugulated,					sq. m

(15.) Mr. McA'Fee was appointed to cover the blank portions of sheets 8 and 9 witl fixed points for the plane table Surveyors either by triangulation or traversing, extending the triangulation, wherever he could do so without much ray-cutting but substituting traversing for triangulation in close and thickly wooded country. As sheet 8 was to be topographically surveyed during the season, he of course took up that sheet first and on the completion of the field portion of this work he had to stop and reduce his observations. In sheet 8 he fixed 5 new trigonometrical stations and visited 4 old ones and ran 136 miles of traversing fixing a sufficiency of points. In the traversing he was assisted by Gopal Vishnu a traverse Surveyor transferred from the *Kattywar party. Mr. McA’'Fee was attacked with fever against which he battled, but he was at times unable to work by reason of it. He had it off and on for rather more than a month so that he was not ready to start on sheet 9 till 19th March by which time he furnished Captain Pullan, who by the by worked with him for one week computing-with all the points required in the eastern plane tables of sheet 8 . During the season he also took observations at 5 stations (disconnected with his triangulation) where vertical angles were wanting, in order to compute the heights of a portion of last year's net work triangulation which by some oversight could not be computed for want of vertical observations at two or three stations connecting that season's work with the old triangulation. On the 2 Ist April he took up the sketching in a plane tuble in shect 8 , the one afterwards lost, in which he sketched 40 square miles, exercising the while supervision over the traversing which was being carried on in shcet 9 by Gopál Vishnu and Ganesh Bápúji (1st) who was sent to work the available traverse party left vacant ly Mr. McA'Fee taking the plane table party which arrangement was consequent on Mr. Hickie falling sick leaving a plane table party vacant. Altogether his traversing amounts to 309 miles giving an average of rather more than one point per 2 square miles. After completing the plane table le joined Mr. Christie and assisted him in clearing the rays and selecting stations on the Mahi Series so that he did not return to recess quarters till ith July along with Mr. Christic.
(16.) Mr. Connor had to complete the net work triangulation in shect 13 and visit a chain of stations of the previous season's triangulation for the purpose of taking vertical observations which had been altogether left undone, which he finished by 29th December having laid down 37 triangles and takcı verticals at 23 stations besides. The area covered comprised $58 \frac{1}{2}$ square miles over which he laid down altogether $\mathbf{5 0}$ new fixed points. There was also a traverse of $8 \frac{1}{3}$ miles run in ground thickly wooled. On the completion of the field portion of this work he had to reduce his observations, compute his triangles and the latitudes and lougitudes of his stations and points, because sheet 13 is one of those sheets that have been topographically surveyed this ycar. For these reductions I therefore directed him to join Mr. Cusson to whom the topograply of the slicet was entrusted and the two worked together for a mouth and a half when hecommenced the traversing of the blank portion of sheet il which has also been topograplically surveyed this ycar but after spending a few days on that work luring which he fixed one station by triangulation and ran 26 miles of traverse, I sent him on to shect 10 to cover the blank eastern half with fixell points ly traversing or by triangulation if practicable. I gave him a Native Surveror with another traversing party to run minor traverses, Gancsh
 has been decorated with 15% miles of traverving giving on an average $1 \cdot 3$ fixed points per square mile. The whole of the half sheet is thickly wooded which rendered triangulation impracticable.
(17.) Mr. Hickie ma4 entrusterl with the topography of shect 11 and under him were placed two Native Surveyors Balwant Govind and Muknal Dinkar cach with a plane table and
tabolar statenent of mork in gozrat doring the field season 1871-72.
Triangulation.

Oberbper's Names.		Instrument used.			3 Anales odserted.				2 Angies obiertid.			Rtydris.
					Triangles.	Triangular error.	$\underset{\text { per mile. }}{\text { Error }}$	No. of Heights.	Triangles.	$\begin{aligned} & \text { Error } \\ & \text { per mile. } \end{aligned}$	No. of points.	
Mr. A. D'Souza, "A. Cliristie " C. H. 3LCd'Fee, " E. J. Connor,		6" by Troughton \& Simms	536	111	145	"	$\begin{aligned} & \text { feet } \\ & 0.1 \end{aligned}$	62	765	$\begin{aligned} & \text { feet. } \\ & 0.09 \end{aligned}$	481	Only a very few triangles yet computed. The Mali Series.
		$\stackrel{10^{\prime \prime}}{6^{\prime \prime}}$ditto $6^{\prime \prime}$	400 38 62	$\begin{aligned} & 25 \\ & 11 \\ & 11 \end{aligned}$	23 7 38	- $\begin{gathered}8.3 \\ 11\end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.62 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \\ & 51 \end{aligned}$	9 19 42	$\begin{gathered} 2 \cdot 3 \\ 5 \cdot 0 \\ 1 \cdot 7 \end{gathered}$	7 15 32	
		Totul,......	$\underline{1036}$	198	$2{ }^{213}$	142	835	...	535	

Plane Tabling.						Traversing.			
No.	Nains.		$\begin{gathered} \text { Plane } \\ \text { Tubling. } \end{gathered}$		Remabtg.	No.	Nantrs.	$\underset{\text { Linear miles }}{\text { of }}$ traverse.	Rtwarss.
12 3 4 4		2480 40.0 10.0 190.0	$7 \cdot 1$ 8.2 13.6 $7 \cdot 4$	The cost per square mile of Topograp pees $46 \cdot 12-2$.	$\stackrel{1}{2}$	Mr. C. H. McA'Fee, " E. J. Connor, ", J. Hickie, Native Surveyors.	$91 \cdot 3$ 1793 193	Check Azimuths obserred at 7 stations.
	Shaikh Eiásim luya, ...					1 2		${ }_{182 \cdot 5}^{148 \cdot 4}$	
1 2 3		$\stackrel{. .}{\text {... }}$	1720 1660	$\begin{array}{r}7.6 \\ \begin{array}{r}9.6 \\ 19.2\end{array} \\ \hline 1\end{array}$		3	Ganesh Dippui, 2nd ...	80.0	
${ }_{4}^{4}$	Mukumd Dinkar, ...	\cdots	$\begin{array}{r}1640 \\ \hline 600\end{array}$	14.5					
${ }_{6}^{5}$	Vital Visknu,.. Bhaw Corind ...	\ldots	96.0 1090	9.5 12.1					
			1982	$10 \cdot 3$				$595 \cdot 4$	

party. The lafter being a new hand, Mr. IIickic had first to train him to the work not quite $a b$ initio as he had received some instruction last recess from Mr. D'Souza. Mr. Hickie was very unfortunate in losing his health which I fear will render him a delicate subject for some time to come. He had some years previously been a victim to chronic diarrhoca but had while serving on this side of India been enjoying an immunity from it until last December when it was again induced by the work on the coast which he sketehed himself and where he was frecjuently for hours with his feet wet in the mud; that and the sun oyer head brought back his complaint which weakened him very much. When I visited him in January I noticed he was looking very much pulled down, but he continued to battle against the disease and worked on till lst March when he was obliged to come into Bhroch for medical treatment which afforded him relief for the time, on which he resumed his work until the middle of April when he was obliged to give up and come again to Bhroch and then the Civil Surgeon discovered that his complaint was much more serious than he had at first supposed. He was for a short time very scriously ill but he was restored to comparative strength again and I then, during the remainder of the season, employed him on sedentary work in my office, fair copy of angle books \&c. During the field season he with his own hands sketched with the plane table 126 square miles and closely inspected the work of both Balwant Govind and Mulaund Dinkar who respectively turned out 166 and 64 square miles. The latter was employed from the 18 th April under Captain Pullan. Mr. Hickie was also employed for about a fortnight traversing as the eastern portion of sheet 11 was too scautily provided with points.
(18.) Mr. Cusson was entrusted with the topography of sheet 13 and under him were Luxumon Ghorpuray and Vital Vishmu, the former a larl trained during the previous season, the latter a newly entertained lad. Mr. Cusson kept Vital Vishnu working with him until 15th December when he started him independently. Mr. Cusson as I have stated in para. (16) was interrupted in his topographical work by having to compute with Mr. Connor for a month and a half and again on 20th March when there were but two plane tables to be completed in sheet 13 which were mate over to Luxumon Ghorpuray and Vital Vishnu, I directed him to take up a plane table in sheet 8 which he had half completed when Mr. Hickie's falling sick necessitated another change and I sent him to take Mr. Hickie's place, relieving him in sheet 8 by Mr. McA'Fee as mentioned in para. (15). Altogether Mr. Cusson with his omn hands turned out 190 square miles of topography.
(19.) I have thus the pleasure of reporting favorably of the whole of my Assistants, every one of them having worked zealously and well, and the result of their combined labors must be considered lighly satisfactory, comprising as it does the Topographical Survey of three shects and the completion of the preliminary preparation of a similar aren for topographical sketehing next season, besides the completion of the Mahi triangulation. This considering the tender age of the party is I consider very successful.
(20.) I have also the pleasure to report the absence of any serious collisions with obstructive or litigious natives which, after the reports of Colonel Nasmyth and Lieutenant McCullagh, is I cousider matter for congratulation.
(21.) Great obstruction was anticipated and indecrl had been previously experienecd from H. II. the Gaikwar's subjects in regard to cutting trees, but I represented through the Resident at - Baroda the fact that most of the other large states in India had haudsomely contributed towards defraying the cost of the Survey of their territory and surgested it would be afler all but a trifling contribution on the part of the Baroda Darbire to pelieve us of the onus of settling and awarding compensation for trees \&e. 'Ihis representation produced the desired eftect and the Darlair sent me a Wrakil (whom I attached to Mr. Christie's canıp) to settle all difficulties in the way of cutting trees and to deal with all claims for compensation as claims against the Darbăr and thus no further difliculties were experienced.

Extract from the Narrative Report, dated 14th August 1872-of Captain W. M. CAMPBELL, R. E., Officiating Deputy Superintendent 2nd Grade, in charge No. 2 Extra Party.

In the report which I submitted ou 21 st September last, giving a sketch of my ermployment on special duty in England during the preceding niuc months, I mentioned that the new Zenith Scetor with other instruments harl just arrived in *Bombay, and I shortly afterwards informed you that all these instruments had reached me at Púna in good order.

According to my instructions I despatched the instruments appertaiuing to the ElectroLongitude equipment to the carc of Captain Herschel at Bangalor, and I sent an astronomical clock to your address at Dehra Dun, while I made all preparations for using the Zenith Sector for my own latitude observations during the appronching field season.
(2.) The work assigned to me was, to take observations for latitude on the Mangalur Meridional Scrics at points as evenly distributed as possible between Kem H. S., in latitude $18^{\circ} 11^{\prime}$ (where Lieutenant Heaviside had closed his series of observations) and Mangalur in latitude $12^{\circ} 53^{\prime}$ at which place I was instructed to choose a station, which should be also suitable for the proposed Electro-Longitude olservations.

The average distance between latitude stations having always been considered as 1°, you adrisel me in case of the nature of the country requiring greater intervals, to endeavor to obtain two, or even three stations suitable for observation in each locality.
(3.) I had the following information to guide me in my selection of stations,-lst under instructious from Lieutcnant Trotter, Mr. Wood had reconnoitred the neighborhood where it was advisable to selcet the first station south of Kcm , and reported that out of 12 stations visited by him, Majala in latitude $16^{\circ} 47^{\prime}$ was the ouly one that seemed suitable.

2nd. Lieutenant Trotter who lad himself executed the triangulation from latitude $15^{\circ} 30^{\prime}$ to latitude 14°. 26^{\prime} told me that he thought Kundgorl in latitude $15^{\circ} 15^{\prime}$ was the only point suitalle for latitude observations in that portion.

These two stations being decided upon, aud that at Mangalur being obligatory, it only remained to find a fourth point about latitude 14° to complete the set, dividiug the total distance of $5^{\circ} 18^{\prime}$ into four intervals averaging $1^{\circ} 20^{\prime}$ each.

Accordingly this was the course I fixed upon, with the intention of using two stations in each locality if the nature of the country would admit of it.
(4.) The principal triangulation of the series from latitude $14^{\circ} 26^{\prime}$ to Mangalur, and again that of the Longitudinal Scrics for some distance east of Mangalur, had not been exccuted at the beginning of last ficld season, and as it was a matter of considerable importance that the latitucle station at Mangalur should not ouly be equally suitable for the longitude obscrvations, but should also be a station of the principal triangulation, or at least be capable of easy conucction thercwitl, the best course appeared to be to proceed myself at once to Mangalur and select the station to answer if possible all these requircments.

This arrangment was also convenient, because it admitted of my returning from Mangalur, through the district about latitude 14° where I wished to select a latitude station, to meet the larty, (which should in the meantime have marched from Pána under charge of my assistaut) at one of the points already fixcd on viz. Majála and Kundgorl.
(5.) In accordance with this programme I despatched the camp from Púna under charge of Mr. Bryson (who had only just joined me from the Guzrat Party) with iustruction to procced to Kuudgorl and prepare that station for observations.

The choice of Kundgorl, for the first station to be observed at, involved a return march northward to Majála, but it was the more convenicnt course for several reasous, chicfly because it suited my movements best with regard to time, and also gave me more opportunity of seeing the localitics to be worked in, before committing myself irrevocably to any one station.
(6.) I left Bombay for Mangalur by steamer on 19th November taking my servants and camp equipage with me as fur as Kante (Coompta) where I landed them with iustructions to procced to Gursuppa by boat and there await my return from Mangalur.
(7.) On arrival at Mangalur I found a party of signallers with their heliotropes, sent to mect me by Major Branlill at my refuest. I lost no time in sending these men out to the 3 aljoining stations of the approximate triangulation, with which 1 wished if possible to
connect my proposed latitude station, substituting it for the station of the approximate series nearest to Mangalur, which being 4 or 5 miles distant from the Telegraph office, I did not consider suitable for the Electro-Longitude observations.

The Telegraph office is so very low lying and hidden from the surrounding country by higher ground and trecs, that fixing trigonometrically any point in its neighborhood would have involved very considerable expenditure.

After some trouble I succeeded in finding a point to satisfy all requirements, close to the lighthouse and within a mile of the Telegraph office, and therefore capable of temporary connection therewith at slight expense.
(8.) Taking the first steamer available I reached Kamte on 28th November; and thence joined my people at Gursuppa next day.

From Gursuppa there is an excellent road over the Ghats to the north-west corner of Mysor, where I made a hurricd inspection of the stations of the approximate series which seemed available for my purpose.

The season was so far advanced that I could not afford to spend so much time over this as I could have wished, but I satisfied myself that at least one station was fairly suitable, and then hurried northrard as rapidly as possible joining the Party at Kundgorl on lGth December.
(9.) Some days were lost in consequence of the station not being ready to receive the observatory tent and instrument, and observations were not finished till 30th December and I started for Majala on 31st December. In the meantime I had deputed Mr. Bryson to examine the two neighboring stations Indúr aud Ganígud with a view to taking observation at one or both, but he reported them as unfit. I then sent him in advance to Majila to prepare for the work there.
(10.) On the march, I took the opportunity of inspecting the station Naolúr next adjoining Kundgorl to the north, and finding it very well adapted for my purpose, resolved to take a set of observations there on my return from Majála.
(11.) The Party reached Majila on 12th January and again I was delayed for 2 or 3 days owing to the difficulty of getting work done promptly. I sent Mr. Bryson to examine two stations Dandoba and Mawinhunda adjoining Majála, which Mr. Wood had not been alle to visit the year before, and he reported that the latter was suitable for a latitude station. I had preparations made accordingly and atter completing work at Majala proceeded to Mawinhunda and finished observation there on 7th February.
(12.) From Mawinhunda the Party returned south to Naolúr, where I took a set of observations and then revisited Kundgorl for a second set, which appeared to me desirable because of the adoption of some changes in the method of observation (which will be noticed later) after the first visit.
(13.) I finished work at Kundgorl on 9th March, and marched southward, whither Mr. Bryson had preceded me with instructions to examine the two stations which I thought likely to be suitable, and prepare them for olscervation if his examination proved satisfactory, which he did and I took a set of obscrvation on each. These stations which I have named "Hunawali" and "Koramoraguda" are not as yet fixed by triangulation, which was closed at Chanderguti a few miles to the nortl by Lieutenant Trotter in 1867 and has not been continued since, but they both belong to the approximate series, and are likely to be fixed next season viz. 1872-73.
(14.) After Mr. Bryson had finished the preparatory building at these stations, as I did not cxpect to require his services at Mangalur, I sent him northward to re-protect and re-transfer the stations at which I had taken obscrvations, as well as any others which he might find to require it.
(15.). I was terribly delayed at both Hunawali and Koramoraguda by clouds and fogy, the latter of which driving up from westward every night, used to put a complete stop to observations generally as carly as $11 \mathrm{p} . \mathrm{m}$. , and did wot clear off again till the sun got high in the heavens next morning.
'These fogs may interfere with the triangulating party more seriously than they did with me, as they envelope the hills and obscure terrestrial objects generally some time before they close overhead and stop star obscrvations.

They commence carly in the hot-weather and increase in intensity as the season wears on, being also worst in the neighborhood of the Gháts.
(16.) I did not finish observations at Koramoraguda till 13th April, when I marched for Gursuppa, having decided that much the most convenient and economical route for transporting the Party to Mangalur at that season, was by the good Ghát road to Gursuppa and thence by boat down the river to Honawar and by native sailing vessel to Mangalur. The journey was made successfully and the Party reached Mangalur on 22nd April.
(17.) I put up the instrument a few feet due east of the Trigouometrical station, which bcing on a pillar several feet in height was not suitable.

Here again, clouds rendered my life a burden to me, for night after night I got either no work at all or only two or threc observations; and in the end I considered myself very fortunate in completing ny observations on 17th May; but I was forced to give up the idea of observing at two or more supplementary stations as I had proposed doing.
(18.) On 21st May I left Mangalur by stcamer for Bepur (Beypore) and thence came on to Bangalor by rail, arriviug on $24 t h$ May.
(19.) I shall now give a slight description of the stations which I visited.
"Majila" and "Mawinhunda," are both situated on flat-topped isolated hills standing in a plain, the gencral level of which is very equable.

The hill at Majala is about 560 fect above the plain, at Mawinhunda about 540 feet. At the first there is a slight preponderance of matter to the North and in the latter to the South, but in neither case is there any reason to expect appreciable disturbance of the plumbline.
(20.) "Naolúr" is on a low sharp peak, 100 or 120 feet above the level of the plain, which is, in the immediate neighborhood, rather broken by undulations.
"Kundgorl" stands on a slight swell in the middle of a very gently undulating plain. The general level of the country surrounding both of the last stations is very equable. In neither of these do I see any reasou to assign a preponderance of matter on oue side or the other, far less to expect any appreciable influence on the plumbline.
(21.) "Hunawali" and "Koramoraguda" are situated on hills in an undulating country of equable general level, but considerably broken up by hills, detached in groups, or in small ranges ruming inland from the Ghats. The country to a great extent, and the bases of both the hills in question, is covered with jungle.

The station "Hunawali" is on the highest point of a sharp ridge running North-East and South-West; its height alove the plain is about 770 fect. There is probably some slight preponderance of matter on the southern side below the hill, but the hill itscif has a small excess to the North.
"Koramoraguda" is on a round topped hill about 450 feet above the plain, the highest point of a little range ruming nearly East and West. There is a slight excess of matter in the plain below the hill to the South, and the mass of the hill itself is rather greater to North than to South of the station.
(22.) At neither of these stations do I think there is any thing sufficient in the configuration of the ground to justify a guess as to the direction of irregular attraction; bit it must be remembered that they are both in the neighboriood of the Western Ghats and the great drop from the Mysor phatenu into the low country of Kanara, averaging fully 2000 feet. This change of level is to the West, and screral miles distant in both cases; but its line trends sonth-eastward and therefore the deficiency of matter caused thereby also lies to the south of the stations, but at a much greater distance from them in that direction.
(23.) The station at Mangalur is on the lighthouse hill, about 160 feet above the sea. There is nothing in the featires of the ground in the vicinity sufficient to cause irregular attraction, but the mass of the high country above the Glaty lies to the Last and North-L'ast and the sea to the West.
(24.) I shall now make some remarks on the method of observation and on the instrument.

In the first set of observations at Kundgorl I made no use of the capability of the instrument for change of zero, but I introduced this at Majála.
(25.) In the middle of my observations at the latter place I had a letter from Captain Herschel in which he informed me, that he had tried the experiment of reversing his
instrument bodily, with so decided an effect on the results that he considered such reversal proved to be almost essential. I had long before comtemplated making this reversal among others, but was deterred owing to the labor it involved of taking the instrument entirely to pieces, which labor however Captain Herschel avoided by the expedient of revolving it, all standing, on a metal fulcrum introduced under the centre of its base plate. The morning after receiving his letter I reversed in this manner and have done so ever since, taking half the observations at a station in each position of the instrument.
(26.) At Mawinhunda I farther introduced a reversal of the sector with regard to the microscopes. This change was a very troublesome one and its advantage problematical, but after adopting it I contiuued it at three stations, and then abandoned it, because I found that with uncertain weather, such as I hall at the latter end of the season, every change of this sort, which divided the total observations to be obtained into groups, each to be taken in its own position, became a fertile source of delay.
(27.) At one time I adopted the plan of changing the order of position (East and West) of obscrvation with alternate stars, at another on alternate nights. Both methods I think have arguments in their favor, but I am now of opinion that the former is the best. It is the one that Captain Herschel has adopted.
(28.) Early in the season I gave up all attempt at selecting stars in "pairs" with your sanction, and made it my first object to obtain stars depending on the greatest number of observations at Greenwich, using for this purpose both the seven-year Catalogues of 1860 and 1864. At the same time I always used an equal number of stars North and South of the Zenith, and endeavored to maintain an equality between the mean Zenith Distance, North and South.

The importance of nsing "pairs" seems to me to be almost entirely removed by the introduction of changes of Zero, whereby (excepting chance coincidences) a fresh set of graduations is used for every observation, whether of the same star or uot.
(29.) I have discovered only one feature of the instrument which gave me uneasiness, viz., an instability of the zero of levels and microscopes, and level of transit axis, which have a tendency to change all together. I attributed this want of stability to the fact that the frame or "cradle" carrying the levels and microscopes and supporting the transit axis, stands upon four bearings, exactly equal pressure on which it is impossible to maintain. The contact is effected by a steel boit assisting gravity and workiug through a thick brass plate. Consequently as the temperature varies the tension of the bolt aud therefore the pressure of the cradle on its bearings also varies, and these bearings not being exactly in the same plane, or not all equally rigid (two being provided with an adjustment) strains are set up, causing the changs of zero noticed, between which aud the temperature of the observatory I traced a decided comection.
(30.) When I first noticed these elhanges they caused me some anxiety but I have not traced any injurions effect in the zero error given by each observation, and it must be recollected that the most valuable feature of this instrument is, that any change of the sort is of no consequence whatever, provided stability may be reckoned upon for the time occupied by one double observation or for about 5 minutes ouly.
(31.) Throughout the season the instrument was carried on spring carts, which I constructed for that purpose at Púna, with a very great saving in pay for bearers, as these carts were dragged by the Khalásies of the Establisliment, aided when requisite by ordinary coolies. They answered their purpose admirably and passed over some very bad, rough tracks, not worthy the name of road.
(39.) I regret that I am not in a position to julge of the obscrvations by their results, which owing to the small computing power of the Party, have not yet been arrived at. The progress of the work has been greatly impeded by the necessity which I found myself under of recommending the grant of one month's privilege leave to Mr. Bryson, on very urgent private aftairs.
(33.) Mr. Bryson only joined me at the commencement of last Field season; indeed he had already taken the field with the Guzrat Party, when he was trausferred. He was therefore quite inesperienced in the work which he has liad to perform.

I am rery glad to be able to speak highly of his capacity and willingness to learn new duties and of his zeal in performing them, and 1 have nothing to complain of but a slight tendency to overlook detitils.
(34.) Nearly all the recording was done by my native writer, who is a very useful and hardworking observatory assistant.
(35.) I shall conclude this report with a short résumé of the season's work. The Party left Púna, on the 9th November and marched under charge of Mr. Bryson to Kundgorl H.S. close to *Dharwar, where I rejoined it on 16 th December, having in the interim visited Mangalur and selected a station there.

Between the 16 th December and 17 th May, observations were taken at seven stations and a second set at one of them, the distance travelled during that time being about 450 miles by land and 100 by sea. The weather during the early part of the season was favorable for observation, but in April and May very much the reverse.
(36.) The following is a statement of the cost of the operations.

The total cost of the Party during financial year 1871-72, was Rs. 17,788 , which divided between 8 determinations of latitude, (including a second of one station) gives the average cost Rupees 2,223-8-0. This average however is not a fair one; as during the first five months of the year the pay of the officer in charge (Lieutenant Trotter acting) was not debited against this Party.

Extract from the Narrative Report-dated 6th September 1872-of Captain T. T. CARTER, R. E., Deputy Superintendent 2nd Grade, in charge Brahmaputra Series.

Pergonvfj,
Mr. W. G. Bererley (in charge) Asst. Supdt. 2nd Grude.

Asgistants.

Mr. C. T. Neuville, Sureyor 2nd Grade.
Mr. G. A. Harris, Mst. Surreyor 1st Grade.
1 Native I)octor.
51 Knláshies.
15 Barkandúz Guards.
(1.) The Party as per margin left *Calcutta on the 18th of November 1871 in charge of Mr . W. G. IBeverley (who was also in charge of the Eastern Frontier Series) arriving at Kaliganj on the Bráhmáputra River on the 28th of the month, where Messrs. Neuville and Harris landed to carry out the iustructions as conveyed to them by Mr. Beverley.
(2.) In accordance with the programme of operations submitted for approval to the Superintendent G. T. Survey of India in Mr. Beverley's letter No. 106 of 1871, Mr. Neuville was to complete the approximate series fixing definitely the sites for the Alangjani and Gobindpur Tower Stations, as some doubt existed whether the positions originally fixed for these Stations by Mr. Beverley in the Season of $1870-71$ would last owing to the encroachment of the river. Mr. Neuville was then to fix the position of the Rangira Hill Station and visit the hill station of Gáropára to see if the rays to the phains were clear, subsequently Mr. Neuville was to examine the rays

Narsingbhanj to Kashdoho.

Kashdoho	", Kanchípára.
Gáropára	"Kanchípára.
Gáropára	"Halka-Char.
Gáropíra	"Janakípur.

and if necessary make the final clearings.
(3.) At the completion of this approximate work, Mr. Neuville was to take up a minor triangulation to the Civil Station of Maimansinh if time permitted, if not, he was to pry the compensation due on the above mentioned rays. Mr. Neuville carried out these instructions. The station of Alangíni was found intact and a position chosen for a new tower to be built at Gobindpur, in place of the site originally selected up to which the river had encroached to within 40 feet. The final rays above lescribed were cleared and compensation for trees paid.
(4.) The completion of the approximate work occupied Mr. Neuville to the 15 th of February, when he proceeded to take up the minor triangulation to Maimansinh, on the side Poerbari
to Rashidpur of the Brahmáputra Series, but as time would not have permitted him to have completed the triangulation as far as Maimansinh during the season, and the 12 -inch Theodolite with which he was to have done the work had not arrived, it was abandoned after taking trial rays for the lst triangle of the series. He then proceeded to pay compensation for trees cut, in accordance with Mr. Beverley's instructions as above mentioned. This occupied Mr. Neuville till the 15th of April, when he proceeded to Calcutta and thence to Head Quarters, Dehra Dun, arriving on the 9th May.
(5.) The approximate work has been completed (with the exception of building certain Approximate worl. towers and platform stations to be afterwards enumerated) and the rays cleared up to the junction of the series with the Assfim Longitudinal Series. Mr. Neuville's work during the past field season is I think deserving of commeudation.
(6.) Mr. G. A. Harris on landing at Kaliganj on the 28th November proceeded to Bonarpúra, Kanchípúra, Bhatibochágari, complete the building of the tower stations of the Series, but having completed the Tower Stations as per margin, he was directed to proceed and take up the building of the pillars on the Eastern Frontier Series, leaving Káliganj for *Gowhatty on the 24th of February.
(7.) There remain to be built the following Tower and Platform Stations namely, at Tower and Platform Stations to be built. Kashdoho, Narsingbhanj, Gobindpur and Alangjáni stations, and 5 Platform stations, viz., at Gáropára, Peshkarbhita, Rangira, Singimari and Samding.
(8.) The side of continuation for the ensuing season's work, will be Parkoksa to Poelsa of the Basalia Polygon, but Mr. Neuville reports that there is much fear that the station of Parkoksa will have been carried away by the river during these rains, in which case a new pillar will have to be built in the vicinity of Parkoksa aud two triangles re-observed in the Basalia Polygon.
(9.) The charge of the Party was made over to me, vide Departmental Order No. 23, dated Captain Cartor takes charge. the 13th May 1872. The information given in this report is chiefy derivable from Mr. Neuville the Senior Assistant with the party. The Party will take the field towards the end of October and an endenvor will be made to complete the work by the end of the field scason 1873-74. There remain 3 Hexagons, 2 Pentngons and a Quadrilateral to complete the Series.
(10.) I regret to say that Mr. Neuville, on the return of the Party to IIead Quarters, was Fealth of the Party. obliged to avail himself of two nontls privilege leave to recruit his health which he wishes to state has suffered soverely during this, as well as the previous field scason. Of the Native listablishment, about 20 per cent were geacrally ill with fever or dyseutery.

Extract from the Narative Report-dated 14th September 1872-of (laptain H. TROTTER, R.E., Deputy Superintendent 3rd Grade G. T. Survey, in charge *Kattywar Survey.

(3.) The Party left recess quarters at Púna about the 20th October, all the Assistants and Native Surveyors, proceeding as usual by rail to Súrat, thence across the (inlf of *Cambay by bandar-boat to *(rogo, our starting point for the interior of Kattywar. A few days march took them to the ground they had to survey and nearly all had commenced work by the $20 t h$ November.
(4.) I returned myself to Púna from privilege leave on the 9 th November, the arrangements for taking the field having been ably conducted during my absence by the Assistant Superintendent Mr. MeGill. Mr. Fielding had remained behind in Púna under my instructions to complete some of the mapping and records: and by the 14 th November, I was able to despatch to Head Quarters, for publication, the whole of the fair copies of the maps completed duriug the previous season viz. sheets XXVI, XXVII and XXVIlI of the Kattywar Survey scale $2^{\prime \prime}=1$ mile.

Index Chant of the KATTYWAR TOPOCRAPHICAL SURVEY

(5.) On the 15 th of the same month Mr. Fielding and I started for the districts and on arrival at *Bombay, were somewhat alarmed at reading a paragraph in the newspapers to the effect that a tremendous storm had swept over the Gulf of Cambay on the 12th, and that many vessels had been wrecked, especially between Súrat and Gogo; that the sea wall at the latter place lad been washed away and a great amount of damage done; that a number of tents had been swept away, amongst them those of au assistant in the Trigouometrical Survey. This was so far satisfactory, in that it was probable that the assistants had safely arrived; but knowing that the usual camping ground at Gogo was situated immediately behind this very sea wall, and fearing that very probably the whole of our tents, instruments, stores, records, \&c. (which had been despatched by country craft direct from Bombay along with the Subordinate Native Establishment and the Assistants, and my own horses) might have been deposited 'there as usual, I was naturally very anxious until, on my arrival at Gogo on the 20th, I learned, that by a great piece of good fortune, owing to the unhealthy state of the camp followers, Mr. McGill had directed the whole of the Head Quarters camp to await my arrival at Wartej, about 12 miles inland, instead of at Gogo, where I had expected to find them. Thus no harm or damage was done to Government or to my own property; but Mr. Fielding's tent had unfortunately been pitched in the usual place and he found, on his arrival, everything that he had more or less injured by the salt water. His tents and boxes had been carricd away by the force of the waves and had been deposited at a considerable distance off, close by the missionary's bungalow. Altogether, however, it is a source of congratulation that so little damage was done. Had the storm occurred a few days earlicr the consequences might have been most disastrous.
(6.) Mr. Wyatt left Púna at the same time as the other Assistants, proceeding from Bombay ly pattimar (country-boat) direct to Jafarabad, a port on the sea coast of Kattywar situated in sheet XXIX, a portion of the survey of which sheet had been left unfinished the previous season and which 1 lad deputed Mr. W yatt to complete.
(7.) The whole of the Assistants worked steadily and well throughout the season which may certainly be considered to have been a successful one, the actual amount of work compieted being as follows :-
(8.) 2036 square miles bave been topographically surveyed on the scale of $\mathbf{2}^{\prime \prime}$ to the Amount of work done. mile, 1940 square miles have been covered with a net-rook of triangles preparatory to topographical survey, 779 linear miles of Täalluka boundary have been traversed with theodolite and chain, every boundary stone having been fixed, besides which 156 linear milcs of traverse have been run along the margin of the season's work to test the accuracy of the detail survey.
(9.) The majority of the plane tablers commenced work in sheet XXV and worked steadily northwards, completing before the end of the season the whole of the topography of sheets XXIII, XXIV, and XXV, a very satisfactory out-turn of work considering the number of hands employed (viz: five European Assistants, two of whom were quite new to the work, and five Natives of whom oue was a raw-hand). The ground in sheet XXV was mostly flat with the exception of one plane table, but in the sheets to the north there was an enormous amount of detail, requiring a large expenditure of time and labour to survey. Had it not been for this I might probably have a still little larger out-turn of work to record; for the past season has happily been an umsually healthy oue and there was comparatively little sickncss in the field though I regret to say there has been a great deal since our return to quarters.
(10.) Whilst the majority of the Assistants were employed in those three sheets, Mr. Wyatt was hard at work in shect XXIX where he had first of all to complete a piece of triangulation, then run some traverses, and fiually complete the topography of that portion of the sheets XXIX and XXX which was left unfinished last year. This was all completed satisfactorily before the end of May.
(11.) I had thus the satisfaction by the end of the season of having the completed portion of the Kattywar Survey in a more compact form that it has ever yet presented. It will be secn by reference to the Inder Map that the topography now completed includes sheets V to IX, XII to XIX, and XXIIL to XXX. This will euable degree sheets VI and VII to be prepared on a scale of 4 miles to the inch.
(12.) I am happy to say that in the gromin we have been surveying during the past senson nearly the whole of the 'Wailhaka boundaries have been property demareated by the local committecs appointed for the purpose, and that in the maps we shall send in this year there will be comparatively few "undemarcated" boundaries to disfigure them.
(13.) Whilst the filling in, of the topographical detail in sheets XXIII to XXV and in XXIX and XXX was progressing, Mr. McGill was carrying on the triangulation in the
north, over the ground to be surveyed topographically during the approaching field season. Sheet XXII had been triangulated in season 1870-71, and I had instructed Mr. McGill to endeavour to complete the triangulation of sheets $\mathrm{X}, \mathrm{XI}, \mathrm{XX}$ and XXI: this was finished by the end of the season.
(15.) During the approaching season nearly all hands will be employed on the topography of sheet XXII and of those sheets that have just been triangulated over by Mr. McGill, who will himself be employed in triangulating in the vicinity of Rajkot.
(16.) I have been in frequent consultation with Colonel W. W. Anderson, the Political Agent of Kattywar, as to the ground he would now wish taken up for survey, and he is anxious that I should commence operations in the vicinity of Rajkot, (the Head Quarters of the Political Agency) good maps of the country about which are very much wanted, that portion of the existing map of Kattywar being exceedingly unreliable. To show the urgent necessity that exists for a more reliable map of the country, than that which at present exists, I may mention 2 or 3 comparisons I have made between our work of the past season and the existing map, which was compiled in the Chief Engineer's Office, Bombay.

			Correct	According to existing map
Distance in		miles between	Anandpur and Cholila	$\mathbf{2 0 4}$
Ditto	ditto	Adkot and Panchaorda	$\mathbf{3}$	26
Ditto	ditto	Babra and Jasdan	$\mathbf{1 4}$	$\mathbf{7 3}$
Ditto	ditto	Karasia and Jasdan	$\mathbf{7}$	17
			$2 \frac{1}{2}$	

(17.) Besides these linear inaccuracies the lines of watershed and drainnge are in many instances entirely incorrect; so much so that for any engineering purposes, the old map may be considered as worse than useless. I recently had a visit in my office in Púna from the Agent of the Bombay *Baroda and Central India Railway, with reference to a proposed extension of their line from Wadwán (sheet XII), the present terminus of the Railway in Kattywar. Au examination of the original maps of the past season induced him to lay out for detail survey altogether a different line to what he had originally intended.
(18.) I now proceed to report separately on the work of each Assistant. Lieutenant A. W. Baird, Assistant Superintendent joined the party in June, on return from sick leave in England, and has recently been appointed to the independent charge of a Party now being formed for the purpose of carrying on tidal and spirit leveling operations in Western India. During the few months that he has been attached to this office, Lieutenant Baird has been very regular in his attendance at office and has been of very great assistance, both in the ordinary computations and also in the reduction and arrangement of the traverse computations. We have now in the office a large mass of records connected with the Täalluka traverses and Lieutenant Baird has becn indexing and arranging these in a methodical manner, a work which will save much time and trouble hereafter.
(19.) Mr. McGill left Gogo on the 9th November, but the great storm of the 12th which was felt nearly all over eastern Kattywar) was followed by a succession of storms more or less severe, during which a great quantity of rain fell, delaying very considerably all the Assistants on their march and making the journey to the interior a most unpleasant one, as the roads in Kattywar after heavy rain are all but impassable. These heavy showers continued up to the 20th and did a great deal of damage to the grain crops, then in course of collection, as also to the cut grass, a great quantity of which was ruined, and nearly all the remainder more or less damaged: cotton however was benefited by it, and perhaps on the whole it did as much good as harm, as the previous fall of rain had been very scant and the young crops of all kinds were much in want of moisture. Notwithstanding the rain Mr. Mcfill was able to commence his observations in sheet XII on the 20th November, and by dint of that hard and steady work on which I have more than once had the pleasure of reporting, completed the work allotted to him by the middle of April. Many of his stations of observation were old Tower Stations of the Kattywar and Guzratt Longitudinal Series and considerable difficulty was experienced, as in most cases the platform surrounding the paka central pillar had crumbled away; and as the greater number of these towers were from 20 to 40 feet in height it was a matter of no small trouble to ercet wooden platforms to support the obscrvatory teat, especially in a country where timber is very scarce and difficult to procure. Mr. McGill adopted a plan of sending to the beadmen of all the surrounding villages receipts for ropes, bamboos, timber, \&c. These receipts contained a promise to return all the stores when done with. By this means he used to collect in an hour or two material sufficient to construct his platform, which was erected in a few hours more at a cost of a few rupees, whilst had he not adopted this
expedient, he might have been delayed days at each station and spent a small fortune in the purchase of stores from the neighbouring towns of Dholera an Wadwán. It is rather a peculiarity of the district that men will often lend material when no amount of persuasion will induce them to sell.
(20.) This district triangulated over by Mr . McGill is almost a dead flat with very little detail and will prove easy ground for our Surveyors. It is, like the rest of Kattywar, divided into numerous petty states, the north-western portion is mostly the property of Dhrángdra one of the four first-class states of the country. I paid a visit to the "Raj" as the chief of the State is called, during the cold weather and the Darbir Officials have always been very obliging and ready to help us as far as practicable, affording a marked contrast to the neighbouring state of Wadwán, which has obtained rather an unenviable reputation of an opposite kind.
(21.) The Dhrángdra Ráj is an enterprising and energetic man, and is pushing on of his own accord various works of improvement, such as the construction of roads, building of dharmsalas, planting out of trees, and in even helpiug forward the construction of a railway, which amongst other benefits will carry away to distant markets the excellent building stones of various kinds that are found in lis territory, more especially to the north of the town of Dhrángdra where beautiful sandstone is procurable.
(22.) The other principal states in the District are Talsana, Rájpura, Lakhtar, Bajana and Patri. Portions also of the states of Limri and Wadwán euter into these sheets, which nearly all belong to the district of Kattywar called "Jhalawar" or country of the "Jhalas". a tribe of Rajpúts said to have settled down in these parts in about the yth century. The original name of this tribe was "Mukwahana" a name said to be still existing in Central India. Several of the smaller states once formed a portion of Dlirángdra and although now actually entirely independent, their chiefs do not consider their investiture on succession to the crown complete until presented with a dress by the Dhrángdra Ráj.
(23.) With the exception of occasional low stony ridges bare of cultivation the country is entirely flat, and is on the whole fertile. The sandy soils produce bajri and jawári crops and the blacker soil which was ouce very famous for the quality and quantity of its wheat is now cliefly covered with cotton. The water of the district is not good, towards the Runn it is brackish and is mostly collected in tanks, a great many of which get dry in the hot weather following a bad monsoon, in which case wells are generally dug at the bottom of the tank. A more elaborate description of the country will be given after it has been topographically surveyed.
(24.) Mr. McGill in the course of the season's operations covered a space of $\mathbf{1 7 6 0}$ square miles with 165 triangles, besides measuring 947 triangles (only 2 angles observed) for purposes of fixing points for our detail Surveyors. He observed from and fixed the heights of 103 stations, besides fixing the heights of 98 stations which he did not visit, altogether a first-rate season's work; other details connected with which will be found in the tabular statement attached to this report.
(25.) Mr. F. Ryall, who joined the Party during my absence on privilege leave in October, left for the field with the other Assistants at the end of that month. He had never had any previous experience in plane tabling, so I sent him to learn under Mr. Gwynue, one of my best trained laands. He was somewhat slow in pickiog up the work and remained with Mr. Gwynne until the end of December, when he commenced independent work. His progress was for some time very slow, but as the season advanced, he got on faster and at the close had completed 85 square miles of survey on the $2^{\prime \prime}$ scale. I nm, glad to say that his mapping was very carefully and accurately done. Mr. G. Auding rejoined the party from sick leave on the lst of June, since which date he has been employed in miscellaveous computations under Mr. McGill.
(26.) Mr. J. Wood was transferred from the Astronomical to the Kattywar Party shortIy hefore we took the field. He had no prior experience in the work of a topographical party, but he practised with it plane table in the neighbourlood of Púna before leaving for the districts. He also, during the latter half of November, worked with Mr. Gwynue preparatory to commencing independent work. During the season he completed 11% miles of detail survey. His out-turn would have been greater, but there was a good deal of detail in the ground he had to survey; besides which 1 made him constantly change boards with a young Native Surveyor (Nílkant) who was out in the field for the first time and whom it was nccessary to train in halits of accuracy, which I thought would best be done by constautly checking his work by an accurate and careful Surveyor, such as Mr. Wood has proved himself to be. This assistant has been very regular in his attendance in office and has been of much use both in the computations and mapping.
(27.) Mr . Gryynne surveyed during the scason 161 square miles. This is not so large as his usual out-turn, but most of the ground he worked over was hilly and full of detail; besides which he was in the early part of the season considerably delayed by having to instruct - Mr. Ryall and one of the Native Surveyors in the theory and practice of plane tabling. The ground surveyed by Mr. Gwynne is as usual well and truthfully delineated. In recess Mr. Gwynne has been most useful: his skill and experience in preparing the maps coupled with his steady application to work makes him a valuable assistant in the office.
(28.) Mr. T. Rendell worked well in the field, completing the survey of 216 Square miles, part of which was intricate and with a good deal of detail. His work is accurate and neatly executed. In office, since return to Head Quarters Mr. Rendell has done good service in looking after the reduction of the traverses, although I regret to say that illness has somewhat interfered with his regular attendauce in office.
(29.) There is a great denl of labour now incurred in the reduction of our Täalluka traverses, the calculations and plotting of which occupy the time of about four assistants during the whole recess, and as uufortunately some of the men who execute the traverses are not sufficiently educated to be entrusted with the computations, a great deal of extra labour is thrown on to the hands of those who would otherwise be employed in the ordinary routine work of the office. This would indicate the necessity of refusing to entertain in future as Native Surveyors candidates who have not sufficient knowledge of Euglish and of elementary mathematics to enable them to compute out their own traverses.
(30.) Although the system now adopted of computing out by rectangular co-ordinates all our traverses, causes great alditional labour yet it is no doubt more than compensated for in the increased value of the results, as our traverses can now be plotted at any time on auy desired scale and will be of great use in future surveys for revenue purposes.
(31.) Mr. E. N. Wyatt has, as usual, done a first-rate season's work, viz., triangulated over 140 square miles of country, computed out his triangles in the field and surveyed topographically on the $2^{\prime \prime}$ scale 245 square miles (in shects XXIX and XXX) of country, parts of which werc very lilly and intricate. Besides this he has run 41 miles of traverse along Täalluka boundaries.
(32.) As before explained there was a quantity of unfinished work, both triangulation, detail Survey and traversing to be finished in sheets XXIX and XXX before those sheets could be got ready for publication. It was a very hard season's work to get through, and I selected Mr. Wyatt for the purpose knowing that he, if anybody, would accomplish it. I am glad to say it was completed to my entire satisfaction, although I much regret that Mr. Wyatt has since suffered severely in health from lis exertions in the field. Details regarding Mr. Wyatt's triangulation will be found in the "Tabular Statement." Considering that it was lis first attempt at triangulation, the results nay be pronounced good. His traverses however have a rather larger error than most of those ceecuted by other Surveyors during the past season. This is probally owing to his not having the same opportunities of testing the length of his measuring chains as those Surveyors who were working near my owu camp. His errors were nearly always in deficiency.
(33.) Mr. Wyatt only returned to Head Quarters late in May and on the lst July left Pána on three montlis privilege leave.
(34.) Mr. W. Fielding has turned out 219 square miles of detail survey in a very creditable manner and would have done more but that I kept constantly changing boards with some of the junior Surveyors a process which, though decreasing materially the out-turn of work, adds very much to its value.
(35.) Mr. Fielding worked steadily and zealonsly throughout the season and continues to give every satisfaction. He also has been granted three nouths privilege leave which le a availed himself of on the lst of August.
(30.) Of the Native Survegors Vissaji Ragonath has been very useful in the field in preparing and projecting plane tables, in occasional compntations, in giving out traverses and other miscellaneous work. In Púna he las been mostly employed in the traverse computatious.
(37.) Govindji Malálay survered 260 square miles of country in very creditable style and has worked hard aud steadily in office in plotting traverses, \&c.
(38.) Vishnu Morcshwar surveycd 222 square miles in good stylc and though frequently sick has been usefully employed in oflice in tracing, drawing, \&c.
(39.) Ráoji Naráyan and Shrídhar Saccaram surveyed 174 and 258 square miles respectively. Both these Surveyors, especially the latter, have much improved both as regards quality and quantity of their work; although in their anxiety for a creditable out-turn they are occasionally apt to hurry too much over thoir ground.,
(40.) Nílkant Vittal, brother of Shrídhar Saccarám and a new hand this season, completed 82 square miles of country and bids fair to become a good Surveyor.
(41.) Of the Traverse Surveyors, Nursu Dinkar, Krishna Govind and Boluji Bhosaker completed respectively 299,170 and 270 miles of boundary traverse and the two latter in addition traversed 75 and 81 miles respectively of check lines. The traverses this season will stand very favorable comparison with those of former years. They lave all been computed out and corrections applicd from the true geodetical distances.
(44.) Owing to the large out-turn of ficld work during the past two seasons and the amount of work involved in the traverse computations as well as the alsence from sickness of many of the Assistants, our computations and mapping are somewhat in arrears, but I hope, before the close of the recess, to be able to send to Head Quarters for publication fair copies of all our last season's maps.
(45.) The country under detail survey by Mr. Wyatt in sheets XXX and X XXI has been described in former reports. The Northern part of his work forms the Southern portion of the Gir Bange of monntains, one of the few places in India still forming the haunt of the Lion.
(46.) I have on many occasions during the past few ycars, while passing through the Gir, tried hard to shoot one of these animals, but I have never been rewarded ly success until the present year, when accompanied by Mr. Wyatt, who was surveying in the neighloourhood, we had the good fortune to bag two full grown oncs and two culs. As I do not know of any naturalist or sportsman (Dr. Jerdon not execpted) who has written any account of the habits of the Lion, a few details may not be uninteresting. It is crroneous to suppose that the Kattywar (Guzrát) Lion is maneless, although in the specimens I have seen, the mane has been considerably shorter and of lighter colour than that of the African species. One that I shot, supposed to have been cight years old from its containing that number of lobes in its liver, had the hair covering the back of the heal and neek not more than a few inches long. The dimensions of this animal tuken as it lay dead on the ground were as follows :-

Length from nose to tip of tail
.
" of head and borly alone
"
of tail

(47.) In appearance its colour is very much like that of a cancl or a female nílgie, and I have ou one occasion when at a distance aetually mistaken a lion for the latter animal. From its colour it derivel the name, ly which it is known in most parts of Guzrát, "Untía-Ráy" or "Camel coloured Tiper." In the (iir however it is always called "Sawaj,", a name that I do not think is known out of Kattywar. The male is rather darker than the female and is a little heavier alout the head and shoulders; the female being very much the same shape as the common tiger. Their habits are somewhat similar to those of the tiger. They always travel at night leaving their daily resting place about sunset. 'Their first visit is generally to the water, after which they wander about in scarch of food, often going many miles over hill and dale in their nightly peregrimations. In passing from one favorite resting place to another they gencrally make use of the best ronds the country affords, and I have often met their foot-marks going for miles along the road I have been myself traversing; and if one did happen to travel in that country on a fine moonlight night, I can imagine nothing more likely to ocemr than a chance rencontre with one of these forest kings. They feed cliefly on nílgíc, sámbar and wild hog, a single blow of their paw generally sufficing to break the bick of the largest animal. They sometines commit considerable depredations on the herds of buffaloes that are taken into the Gir for grazing. Owing to the great heat, the cattle are generally allowed to wallow in the mud and lie under trees during the hottest part of the day; and at night they are driven out to graze. As a rule they keep together, in which ease they are never disturbed by the Lion; but if by chance a sick one should lag behind or should any wander away to a distance from the rest of the herd, the Lion, if there be one near, is sure to lag it, however big and powerful it may be. As long as the herd keeps together, however, there is no fear, as the Lion dare not attack. If the kill be made carly in the evening and the lion be hungry, he will at ouce
tabolar statement of OUT-TURN OF WORK IN Kattywar doring the field season 1871-72.

commence eating it, but will almays leave it about daylight and go and rest for the day at some secluded spot in the neighbourlood, either down near the water in the shade of Caranda and other trees, or, what is periaps more common, they will go on the top of some neighbouring hill where they may get a cool breeze and where they lie out in the open under the shade of a big stoue or, when procurable, of a large banyau tree. When disturbed they do not slink away like a tiger or panther, but walk or run upright without any attempt at concealment. Reing very nearly the same colour as the ground and of the scorched leafless trees with which these hills are covered in the hot weather, it is very difficult to see them before being seen oneself; and this generally happens, owing to the frequent absence of undergrowth in these jungles before the sportsman gets within range.
(48.) I have never heard an authentic instance of an unwounded lion attacking a man, but when wounded, I should say that their ferocity would fully equal that of the tiger. It is a curious fact that not a tiger or a bear exists in a wild state in the whole of Knttywar. Panthers however are very numerous in the Gir as well as in other parts of the country.
(49.) As far as I know from my own experience and from enquiries I have made, I am of opinion that there are not more than fifty lions in the whole country. The female generally has two cubs, but probably, as is the case with other animals of the kind, there are three born-it being supposed that the first born is always devoured by the mother.
(50.) The country surveyed topographically in sheets XXIII, XXIV and XXV has also been deseribed in last year's report. A fuller description will be given when the general report on the degree sheet is prepared.
(51.) Late in the season, after inspecting Mr. Wyatt's work, I went down to the south and examined very carefully the whole coast line between Diu and Verawal with the object of selecting stations for tidal observations. There is a place near Diu, to the N. E. of the island, which I think would be very well adapted for the purpose. It is the spot where observations were taken by Mr. D'Costa under Colonel Nasmyth's superiutendence in 1855. There is a low deep channel to the W. of the island of Diu, just opposite the town of Brancavara, which for some reasons would be more suitable, but which would not be so well protected during the S . W. monsoons. Firom this place up to and beyond Verawal there is no suitable spot. There are many creeks which might at first sight look promising, but a little investigation always brings to light the existence of a bar with a little or no water over it at low springs. I have communicated the result of my investigations to Lieutenant Baird who has now been entrusted with the carrying out of the proposed tidal observations. I applied to the Bombay Government for the loan of a steaner or other vessel, to enable me to make a more eatensive examination of the coast lime, but competent authorities decided that it would be too dangerous a trip to undertake so late in the season ; and I was obliged to content myself with the examination of a comparatively small strip of coast. I hope however that arrangements will he made to enable Lieutenant Baird to carry out a very complete survey of the coast during the approaching cold whether; so that, on the arrival of the new instruments now being coustructed in England under Colonel Walker's superintendence, it is to be hoped the tidal observations on this side of Indin may fairly be started.
(52.) The total expenditure on the Party during the past financial year has been Rupees 68,830 , against 66,859 of the previous year, whilst the out-turn of work finally completed is 2,036 square miles, against 2,064 of the former year. Deducting Rs. 3,600, the cost of the Boundary Survey Establishment, we have an average expenditure per square mile of mapping completed of Rs. 32-0-7, against lis. $30-10-4$ of $1870-71$ and Rs. $58-9$ of 1869-70.
(53.) It is again a pleasure for me to be able to acknowledge the cordial assistance we always reccive from Coloncl W. W. Andersou the Political Agent and the Assistants under his orders. The country is in a somewhat disturbed state, the police arrangements being very incfficient, owing to the cuormons number of petty states into which the country is sub-divided; but although there have been bands of mounted aud well armed robbers. traversing the country, against whom I have been more than once warned by the Political Assistants, I am happy to say that in no instance have they interfered with or annoyed either myself or any of our Survey Partics, although villages have been attacked and looted within a few miles of where my assistants have been working. The large tracts of wild hilly ground existing in the Gir and other places in Kattywar, afford admirable places of refuge for these bands, when the plains become too hot to hold them.

Extract from the Narrative Report-dated 29th August 18\%2-of Lieutenant J. HILL, R.E., Assistant Superintendent 1st Grade G. T. Survey, in charge * Kumaon and * Gurhwal Party.

(1.) When the skeleton sheets of the large scale survey of Masúri and Landaur were completed, a reduction by photography was made from them at the Head Quarters' Office to serve as a guide map for Masuri and Landaur. 'Ihree of those sheets, which include the most important part of the sanatarium, were published in the summer of $186 \boldsymbol{z}$, and the guide map was published in April 1871. During that interval of four years several houses had been built, and other changes made, and the above-mentioued reduction was only published so as to be a convenieuce to the public until a more perfect guide map could be prepared.
(2.) On the return of the party to Masúri in the last week of April 1871, the pre-

The Recess of 1871.

Guide Map for Masari and Landaur. Second Edition. paration of a second edition of the guide map was commenced, on the basis of the reduction mentioned in the preceding paragraph. 'This second edition contains all the clanges that have taken place in the sanatarium since the preparation of the original maps. It is furnished with a table of distances, and an index, and a number of new barometric leights are also eutered in it. The measurements for the table of distances were madeley Mr. J. Low with a perambulator of Sir A. S. Waugh's pattern, aul in addition to them some distances were extracted from a table prepared by Mr. J. B. N. Hennessey several years ago, and kiudly placed at my disposal by him. The new houses which had been built, and the other changes which had taken place in Masúri and Landaur were laid down by Messrs. J. Peyton and T. Kinney on the original large scale maps, and afterwards entered in the guide map ly the latter officer, who assisted greatly in the gencral preparation of the map. Mr. H. Todd took the barometric height observations with an aneriod barometer of $4 \frac{1}{2}$ inches diancter. A similar stationary instrument was read in my office at intervals of half an hour during the time le was engaged on this duty, and the curve of atmospheric pressure indicated ly it was used to correct the readings of the transported barometer: the results thus obtained have proved very satisfactory. On the completion of the map in September 1871 it was seat to the Head Quarters office at Dehra Dun, and there published.
(3.) The main work of the recess was the preparation of the fair maps of the Kosi Kosi Valley Survey Maps. Valley Survey, which comprise 8 large shaded sheets, and the same number of skeleton clarts. The preparation of those maps was a work of time, for they were intended to enable an lingincer to measure the slope of the ground at any particular spot in the survey, and to attain that object it was necessary to ulopt a rather laborions methol of shading, as exphained in my last year's Narriative Report, and the shading was effected by the interpolation of horizontal lines according to a scale of slade which gave a vertieal interval of about 15 feet between the hachures. In the skeletou charts the hill shading was onitted, but the dotted coutour lines were retained.
(5.) The field work began with the extension of the triangulation in the higher mountain

Survey of the higher ranges of the Himnlnyas. ranges of Gurhwal, Messrs. J. Low and I. Pocoek were selected to perform it. Their work consisted in extending, as far as the limited time available would permit, the two minor series of traingles on which they had been engaged in 1869. Mr. Low extended his series up the Mána valley from the temple of Badrúnáth to the village of Ghastoli, and fixed a sufficie:t number of points to enable the topographers to finish the survey of the valley; and Mr. Pocock was able to complete thorouglily the triangulation of the Niti valley from the village of Kargúti to the Níti Pass. The details of their work are included in the tabular statement on page 45-a.
(6.) On reaching the Níti Pass, Mr. Pocock chose three stations on the watershed Trane-Sutlej Penks. (ail of them just over 17,000 feet above the lerel of the sea) from which he was able to fix the positions of 8 remarkable peaks beyond the *Sutlej. One is the famous Kailíy Parbat, the most commanding peak visille from the Níti Pass; another is a peak about 7 miles to the north of the Choka La, laid down as Sápju by Mr. Pocock.
(7.) The difficulties to he overcome in carrying a triangulation over such valleys as those of the Mána and Niti are by no means insignificant. Both those vallcys are enclosed by mountain ranges the average height of whose peaks is considerably over 21,000) fect above the level of the sea, and the spurs are as lofty as the ranges from which they spring, until they come within a few miles of the main watercourses of the valleys. The valleys present the appearance of narrow gorges overhung by stupendous and inaccessible precipices, and it is obvious that in such ground a triangulator has little or no choice as to the shape of his figures, but has in many cases to content himself with observing from any commanding point on which he may be able to set up his in-

details of triangulation, kumaon and gurhwal party. season 1871-72.

Nayse.												Reyaris.
Licut. H. M. Chambers, R.E., ...	2.40	18	101	19	59	70	\ldots	\ldots	$3 \cdot 1$	$3 \cdot 4$	\ldots	Lower mountain districts near Nai-ni-Tal.
Mr. E. C. Ryall,	660	33	280	$\stackrel{9}{7}$	151	93		\ldots	3.7	7.1	\ldots	Forest-clad Bhábar hills. ${ }_{\text {den }}^{\text {Higher mountain ranges of Gurb- }}$
" J. Low,	150	10	58	11	31	42	11	...	$3 \cdot 6$	$3 \cdot 6$...	Higher mountain ranges of Gurb- wal.
	340	14	49	15	26	41	25	...	$5 \cdot 3$	$5 \cdot 3$...	Higher mountain ronges of Gurbmal.
,. L. Pocock,	130	0	12	14	0	12	\ldots	...	109	10.9	15	Bhábar district.
T. Kinney,	302 40	5	12.4 32	10	8 27	8 21	...	\ldots	1.1	20	\ldots	Truns-Sutlej peaks. Forest-clad Bhábar bills.
Total, ...	1862	80	5 ± 6	96	302	287	36	533	4.0	5.6	15	

Topographical Details.

Nines.							Reisaris.
Mr. E. C. Ryall, ...	\cdots	\ldots	98	243	6.4	0	Chiumipahúr wooded hills of n height rarging from 1,000 to 2,000 feet above sea-lerel.
\% J. Peyton, ...	\ldots	...	*263	475	1.8	33	Chiefly forst ground of a height rarying from 2,500 to 8,100 fect abore sea-level.
" J. Low, ...	\ldots	\ldots	*318	763	2.3	41	Chiefly forest ground of a lieight rarying from 3,000 to 9,000 feet abore sen-level.
" L. Pocock,	\ldots	219 218	335	1.8	13	Chiclly forest ground of a heiylt rarsing from 770 to 7,100 feet above sea-lercl.
", ${ }^{\text {E. L. Litchfeld, }}$	\ldots	\ldots	218 173	${ }_{503}^{446}$	18 29	16	Chiefly forest ground of a height varying from 3,500 to 9,000 ceet abore sea-level. Chielly forest ground of a height rarying Irom 2,500 to $7, \% 00$ feet above sea-level.
Total, ...			1279	2815	$2 \cdot 2$	127	* These areas are exclusive of 93 square milcs of the Nepaj border sketched from Kumaon.

trument. To the physical difficulties he has to encounter must be added the difficulties of obtaining carriage, supplies, and fuel. In these ranges the forest line ceases at an altitude of about 11,000 feet above sea level. Up to an elevation of 14,00) feet firewsod is carried up from the forests and stacked for use; but above that elevation the Surveyors are dependent for fuel on the root of a small wild plant which is found at clevations of 13,000 feet and upwards, and the task of collecting a sufficient quantity of this root is one of great labour. There being very little cultivation in these regions, the inhabitants descend during the moutl of October to the lower districts of Kumaon and Gurhwal and barter their salt for grain which they carry back to their homes in the mountains. In order that Messrs. Low \& Pocock might carry on their work successfully, they had to look to the civil authorities for assistance. This was given them most effectually;by Captain Garstin the Senior Assistant Commissioner of Gurhwal. He arranged for their supplies, their carriage, and their tuel, and, as in former years, did every thing in his power to help on the progress of the survey.
(8.) The chief work of the field season consisted in completing the triangulation of both

The Field Season of 1871-72.
the country to the east of Naini-Tal and the Bhábar tracts between Haldwáni and Bharmdeo, and in surveying topographically the districts round Baiznáth, Bageswar, Lohághat, Pítorágarh, and a part of the Blaabar to the south of Káli Dungi, all of which are within the district of Kumaon. It was also thought necessary to triangulate and sketch some ground opposite Hardwar where the low sandstone hills on the left bank of the * Ganges extend for a short distance beyond the boundary of Gurhwal, and terminate in the plains to the north of Asafgarh.
(9.) The triangulation was apportioned to Lieutenant H. M. Chambers R. E., and Messrs. E. C. Ryall, L. Pocock, and 'T. Kinney, and the topography to Messrs. E. C. Ryall, J. Peyton, J. Low, L. Pocock, H. Todd and E. Litchfield.
(10.). I shall confine myself to the general character of the work done. Its details are to be found in the tabular statement on the preceding page.
(11.) Lieutenant Chambers was employed in my camp familiarising himself with the Lieutenant H.M. Chambers, R.E. use of a 12 -inch theorlolite, till the beginning of the new year. During that time the ground allotted to him for triangulation was being staved. It lies to the east of Naini-Tal, and is of a height
Triangulation east of Naini-Tal. varying from about 1,500 to 7,500 feet above sealevel. It is chiefly remarkable for a cluster of mall lakes grouped together in the neighbourhood of Bhim-l'al. In other respects it is like ground of a similar altitude in other parts of Kumaon, such as has been described in former reports.
(12.) During the winter months the people of this district leave it to cultivate their fields in the Bhábar. Carriage could not, therefore, be obtained on the spot, and it became necessary to hire permanent coolies from other districts to euable Lieuteuant Chambers to carry on his work.
(13.) There was then a considerable quantity of snow on the higher ground, and it chanced most unfortunately that while Licutenant Chambers was rrossing a snow-drift on the llth January he fell and sustained a fracture of the collar bone. 'This accident obliged him to take sick leave, and he was not permitted by the Surgeon who attended him to resume work until the 20th February. He succeeded, however, by making great exertions, in finishing his triangulation by the end of the field season; and the results of his work, as since tested by computation, have proved very satisfactory.
(14.) Mr. Ryall was employed on the triangulation (including its computation,) and Mr. E. C. Ryall. Surveg of Clindípulaír. the sketching of the hill tract of Chíndipahár opposite Harlwar mentioned in para: (8.) In intricacy this piece of ground is unequalled by any part of Kumano or Gurlawal. Its survey, which was a matter of no little labour, I found, on inspection, to be thoroughly well done.
(15.) Mr. Ryall has furnished the following notes deseriptive of the Chindipahar hills.
"The Chandipahár portion of the Sewaliks, in the Pijuaur District, is bounded on the West by the river Gauges and on the Nouth-East by the Paili Rau up to its junction with the Khara Sot: from thence the boundary runs up the Khara hot nbout $2 \sqrt{2}$ miles, turns up into a small tributnry in "Northwesterly direction. crosses a low ridge and goes into the Giasíam ka Sot, contimaing nong this Sot till its junction with the Ganges.
"The whole of this tract of comitry is densely covered with forest. The Northern slopes of the hills are principally clnd with sial trees. The Southern sildes of the hills are generally rugred, and are consequently nlmust entirely deserted by sal trees. The bottom of the hills is deusely covered with bamboos, which contribute a good deal to the revenne, giving employment to scores of bamboo cutters.
"It appears that owing to the great demand for charcoal in the Rúrki Workshops, the Chándípahár hills have been made over entirely to the Superintendent of the Rúrki Workshops, who leases out certain tracts of forests to charconl burners.
"The formation of the bills is chicfly of sandstone, identical with that of the Sewaliks of Dehra Dun. The whole formation is so very much broken up that it presenta a sea of confusion, and renders the tracing out of the different little spurs, knolls and streams (which are almost alike one another) a matter of great difficulty."
(16.) The Principal Hill Station of Chandípahar (which belongs to the Great Are Series) having fallen out of repair, instructions were received to undertake its restoration. As Mr. Ryall was on Ropair of Clúndípalár H. S. the spot I entrusted this work to him, and he commenced upon it as soon as he had finished his survey of the contiguous hills. The slipping away of the whole of the Southern half of the original platform caused a great deal of damage to the side of the hill below the station, and it was only after cutting down for about 22 feet that Mr. Ryall found ground firm enough for a foundation. He completed the repair of the station in 10 days, and then started to take up the work assigned to him in Kumaon.

Mr. Ryall's work in Kumaon consisted in completing the triangulation of the Bhábar hills which extend from Haldwáni eastward to Bharmdeo. These hills are even more densely Bhábar Triangulation. covered with forest than those to the West of Haldwani, and the ground in general is
somewhat intricate in character : carriage, also, is not to be procured without considerable difficuty. In spite of these drawbacks Mr. Ryall was able to finish his triangulation, and at the same time a most excellent season's work, by the second week in April.
(18.) Mr. Peyton was employed in the Pitorágarh district. From its eastern margin

Mr. J. Perton.
Topography of the district round Pitorágarh. above the river Káli be was able to sketch 48 square miles of the Nepál border. The part of Nepál so sketched seems to be of a bolder and more rugged character than the country opposite to it in Kumaon. Mr. Peyton closed work in the last week in April. Before he did so, I inspected his ground and found it, as usual, faithfully and artistically delineated.

(19.) Mr. Peyton gives the following particulars regarding the district he surveyed.

"The Pitoragarh district is highly cultivated ; but a great many of the villages, especially those near the Káli river, ure surrombled by dense belts of jungle, the Chír pine being the predominating tree. The Dhaj mountain on the north throws ont very thickly wooded sjurs in the directien of the Káli, with a very gradunl descent for about 6 miles, and then an abrupt fall, with steep precipitous gronad, on the edge of the river. This appears to be a remarkable feature of nearly all the ridges, which rise precipitously from the river, and then slope up very gradually to the main range which forms the watershed of the Káli and Rámganga. The Askot district north of Dhaj is traversed by a large tributary of the Kali, colled Charma Gadh, and has a good deal of undulating ground, all under cultivation, the villngers being chiefy Dótiáls from Nepail, who have been compelled by the high rate of land assessment to leave the Maháajá's territory and setle in Kımaon; and all the productive land on the banks of the Káli is is now in their possession, the Clin' forest being extensively cleared, and villages rising on all sides, with broad green belts of cultivation, forming a most pleasing relief to the sombre monotony of the forest. So rapidly is the work of reclaiming forest going on, that probably in n fow years very little jungle will be left ; in fact only in such places as are rendered inacesssible by huge precipices.
"The rock and gencral formation is limestone, but here and there a crumbling kind of sandstone is preduminant, especially in the lower spurs overhanging the Kiali.
"The roads, both Govermment and village, are generally steep in this part of Kumnon. Besides the great main road to Almora, which has n very stecp gradient on both banks of the Ránganga and Sarju, there is a toletably food road to the higher districts on the woth, much used by traders from Thibet, who bring large ilocks of sheep laden with boras, which they sell in large quantities at hámagar, Bharmden, and other places at the foot of the hills. There is a very fair road from Pitoragarh to Julaghát, easily passable for mounted travellers and laden cattle, about 12 miles in all, or ensy two marches by hnitting half way at the village of Manakot. Leaving Kumaon by the suspension bridge at Julaghát, that road rises hy a sharp zig-zag for about a mile, and thon running along the crest of a high range with a gentle ascent, leads to the Fort of Batharri in Nepal. There are also some good village paths leading ubout the higher ranges in Askot. The enstom of tho villagers being to establish cattle sheds on all the open plateaux and easy gromed, it follows that fair paths will bo found running along most of the great ranges. Besides the mitin road to Almora, there is a circuitous road via Thal, and Bageswar, which is much usel during the time when fairs are held at both places, in February at Bageswar, and in May at Thal.
" In the Pitorágarh district, wheat and rice nee the great staples of production.
(20.) Mr. Low closed work in the Mana Valley on the 5th November, and started for

Mr. J. Low.-Topography of ground round Bagcewar, and in Kíli klumaon. Kumaon to take up the sketching of the ground in the neighbourhood of Bageswar. He reached Bageswar and commenced his work there on the 19th of the same month. The country to the north of Bageswar on the right bank of the river Sarju he found to be the must difficult to sketch. The hills are there precipitous, lofty, and covered with dense forest. The rest of his ground presented few difficulties. It contains here and there a considerable amount of forest, but in general it is open, well cultivated, and dotted with numerous villages. He finished his work in this district by the beginning of April, and then marched into Kinli Kumaou to sketeh the part of the frontier which lies immediately to the north and south of the junction of the Sarju and Kali rivers. In addition to surveying this piece of country he was able to sketch the square miles of the Nepal frontier which were visible from his ground. On inspecting his work, I found it to be well and carefully donc, and to exlibit a marked improvement on the last work he turned out on the same scale in 1869. He closed work for the season at the end of the first week in May.

(21.) The following arc Mr. Low's notes on the part of the country he surveyed.

"The most remarkable place in the portion of country sketched by me is the town of Bageswar, colebrated for its Bazar, Temple, and two large fairs, the first and larger held in the latter end of January, and the second and smaller in February or March. The fuirs are partly sacred festivals held in honour of tho deity Bagnáth, to which flock devotees, pleasure seekers, and traders from the surrounding patlies, and from Thibetan Tartary. Trade transactions also take place to a large extent, it being the emporium for all the surrounding country. The articles offered consist of the household property in common use, besides cloth, wearing apparel, skins, salt, borax, Thibetan ponies, and cattle froin Gurhwal and the Chamba states. The Thibetan ponies being in greatr equest at the civil stations of Almora, Kánikhet, and Naini-Tal, feteb very large prices. Regarding the other articles of merchandise; salt, borax, and akins from the interior of Thibet form the principal staples of trade; the transport of the two former being eflected loy means of sheep and goats, which, on nccount of the rugged aature of the hills, afford the simplest and casiest method of carriage. In consequence of the utility of these nnimals to the traders large prices are offered, and it is not an unusual thing for Rs. 6-8 or Rs. 7 to be given for a good Chamba gont, which goats are always iu consequence of their size and strength taken in preference to the sheep and goats of other districts. Salt is only procurable here at Bageswar, unless it be in the plains at Ramagar many marches aray. Regarding the borax; as Thibet is the only place in the east from which it is to be had, it can be readily understood that the trade in it is very great. Several thousand maunds of this article pass throngh Bageswar every year.
"The principal river is the Sarju, which is joined at Bageswar by the Guinti. Its banks during the rainy season are very malarious, but in the wiater they are the resort of cattle dealers as they afford luxurious pasturage.
"Of the roads, the chief one running by the right bank of the Sarju may be considered the high war, being the one by which the traffic of Thibet is transported. After reaching Bageswar it is joinel by those coming from Saneswar, Katur, and Sanolar, the Katur road being used by travellers from Gurhwal, the Sameswar by those travelling from Rínikhet aud Háwal bágh. These roads are in excellent preservation.
"In the Kamaihi putti, in this district, are a few iron mines worked only to an extent to suit the reguirements of the neighbouring pattis. They are worked hy Domes, or the lowest class of people in Kumaou and Gurhwal, who prefer using only the bark of the Clir pine for smelting purposes as it burus with great intensity and emits no smoke.
"The ground I surveyed topographically in Kíli Kumaon is well cultivated. The spurs of the hills run down into the large streams in a very precipitous manner, and the cultivated parts are therefore to be found in the more elevated porlions of the spurs and ridges.
"From Tamli (a gronp of villages in Talla Des) there is a newly eut road about 3 feet wide leading to Lohaghát. The road from Lohághát uin Pucheswar, to Pítorágarl, which was formerly a regular made rond, is now only a footpath, and this footpath is now scarcely traceable when it passes through cultivation.
"There are ferries over the Sarju at Khet Patoli and Dálifalna, near Pachesmar. To crose the Káli into Nepál rafts floated on dried pumpkin shells are nurle use of; noother method is to cross by swimming, the swimmer being aided by a couple of these shells tied together, on which he rests his chest."
(22.) On completing the triangulation of the Niti valley, Mr. Pocock marched south to take up his work in the Blábar. The portion of ground allotted to him there lies near Káli Dungi, to its south, and is thickly covered with forest except Mr. L. Pocock.-Topograrhy in the Dlaibar and Káli Kumaon. in those spots where clearances hare been made for cultivation. It is also quite flat, and it had therefore to be survered principally by the method of traversing. Before commencing the topogrnphy of this tract, it was necessary for Mr. Pocock to fix a few trigonometrical
points to serve as checks on his traverses. This he did by observing both from the points themselves and from trigonometrical stations on the low hills near Káli Dungi which command his ground; and he also computed out in the field the points (12 in number) he thus determined. He finished his Blábar work by the end of Tebruary and started to take up the sketching of the country south of Lohághát in Káli Kumaon. He cllosed his mork for the season on the 15 th April, and I found it, on inspection, very carefully and accurately done.

(23.) Mr. Pocock has furnished the following notes on the ground he surveyed.

" 7° he first portion of the ground surveyed by me lies between longs. $79^{\circ} 15^{\prime}$ and $79^{\circ} 300^{\prime}$ It is bounded on the Sonth by the fiseal boundary of the Taraii, and on the North by latitude $29^{\circ} 15^{\prime}$ whiclı is nbout three miles from the foot of the hills. Except such parts as are cultirated, the ground is densely covered over with large forest trecs. The Sissu, growing over the sides of the large open ravines, is the only large tree of any value. The Khair (catechu) grows every wherc in close neighbourlood with the Sissul : this tree is much used by catechu dealers. The Sissu in former day's, owing to its great value, was used most recklessly by the people of the neighbouring districts, and owing to the slow growth of this tree, the last $\mathbf{1 6}$ or 17 years of couserviug the forest have not been sufficient to produce any large Sissu trees. Besides the many trees to be met with, there are large undergrowths of plants and creepers; more especially down in the Tarai portions where the cane grows in great abundauce. The Tarai is a most dificult tract to traverse over, owing to the many swawps that interscet it. Without guides it is almost impossible to go throngh it.
"The part of the road from Muradabad to Kali Dungi which passes through this work is in fine order. No hackeries are permitted to travel on the metalled portion. The other roads are in good order during the winter and spring months. During the raius they are very little used, and not kept in repair, and the grass grows on them to the Leight of ten and twelve feet. The grass is always cut away on the setting in of winter.
"The second portion of my work lies in the Chanpáwat pargana in Káli Kumaon, between latitudes $29^{\circ} 15^{\prime}$ and $29^{\circ} 20^{\prime}$ and longitudes $80^{\circ} 0^{\prime}$ and $80^{\circ} 15^{\prime}$.
"The Clannoimat Yalley, nearly 5,000 feet above sen level, is very picturesque, covered as it is with villages and cultivation, and surrounded by hills covered with oak and chír. I came across several clumps of deodar (eedar) which are all considered sacred.
"When commencing work on this ground I found it very difficult to procure coolies and provisions as nearly all the inhabitants were down in the Blábar.
"Most of the ground in this work is covered with forest, and is in some parts very precipitous.
"The road from Bharnuleo via the large village of Bilkhet to Champáwat is in a very bad state, as it is now never repaired. The new road from Bharmdeo to Lohághát via champáwat is a fine, geutly sloping one, and is kept in splendid order".
(24.) Mr. Todd marched iuto Kumaon to take up his work in the neighbourhood of Baijnath. Towards its northern boundary and to the west in the direction of Bhalkot peak, it is lofty, steep, and densely covered with forest. In other

Mr. H. Todld.
Topography of the ground round Baijnáth. parts, althongh there is a large proportion of frrest, the country is comparatively open, and contains, in aldition to a large amount of general cultivation, numerous tea plantations. Some of these plantations seem to have been abandoned, and others are only partially cultivated, which is perhaps owing to the planters having found out that a large poorly cultivated area is not so remunerative as a small one highly cultivated and richly manured. Mr. Todd has delineated his ground with minute accuracy, and has shown its varied character with excellent effect. He finished his work on the 1lth April.
(25.) The following are Mr. Todd's notes on the portion of country he surveyed.
"The ground sketched by me is chicfly composed of high ridges varying from 6,000 to 9,000 fect ahove sea level and mostly covered with dense forest of oalk nud pine, the oak confining itsolf to the western and northern ridyes where the ground lecomes more rugged and precipitous and rises to a higher elevation. The pine is to ke found on comparatively more geutle and ronuded slopes. Deodirs are only to be foumd in chumps, and chictly alout temples. 'Clie largest clump is to the extreme sonth of my work, the wood of which is utilised liy Governneut for bridges \&c. in the vicinity. The valleys are mostly all open and the sreater portion of them is under henvy cultivation. The Baijnilh valley is the only one where a peonl jantion of the ground lies waste, owing to a deseription of graws difficult to nproot. and destructive to all cultivation. The roots of this grass have been known to penctrate through those of the tea plant.
"From the number of te: plantations seattered through iny work planters seem to have been under the impression that the ground was well adipted for such cultivation, but judging from the number deserted and the condition of others I presume this is not the case. The largest and most productive of the planentious are Kosimi and Dunagiri, but a good portion of the latter has been allowed to run waste.
"The roads intersecting my work run for the most part along the valless, through cultivation, and are of easy slope and in fair order. The principal one keeps along the Kosi till within half a mile of Kosani ten plantation when it ascends the ridge that forms the watershed of the Gumti and Kosi rivers; then, with a stiff descent of tro miles on the north face of the ridge, rums through very
open ground, passing through Bajunth and crossing a high range on the north, descends into the Pindar Yalley, keeping along the south bank till its junction with the Alaknanda, where one road branchen off north to Karnprig. nud another to Srinagar. At right angles to this road and starting from Sameswar is a very fair road to Bugeswar which, with a gradual slope, ascends the Mansári gadh and, crossing a wooded ridge which closes the valley on the east, dips down into the Sarju Valley. At the point where this road branches oll from the main one another leaves in an opposite direction, along the Sali gadh, towards Dwáráháth. Higher up another road starts from baijnáth keeping along the left bank of the Gumti with a tolerably easy slopo the whole way to Bageswar. All the above high roads are practicable for laden cattle and mounted travellers."
(26.) Mr. Kinney accompanied my office and was employed on general current work. Mr. T. Kinney. He has proved himself a very efficient assistant, In March l sent him for a few days, for training mad practice in minor triangnlation, to Mr. Ryall who was then working to the east of Haldwini. On sending lim back to my camp, Mr. livall reported that "Mr. Kimey showed great willinguess and nptitude, and the little time that was devoted to his instruction was fully made up to me by him." The work he did while with Mr. Ryall is shown in the tabular statement on page $45-a$
(27.) Mr. Litchfield marched into Kumaon with Mr. Peyton to take up the planeMr. E. F. Litehfiedi. tabling of the country immediately to the west of Mr. Peyton's ground. Mr. Litclifield, although he had had some training in plane-tabling on large seales, had never done any independent work on the l-inch scalc. Mr. Peyton was nccordingly directed to see him start work, and give him any assistance that might seem necessary. Mr. Peyton considered that his supervision was only necessary for the first day : on the sceond he left, aud Mr. Litchficld continued his work alone. At first Mr. Litelafichl worked slowly, but he took great pains, and what he turned ont, if its area is not very large, I foumd on inspection to be aceurate and satisfactory. At the end of the season he was working at a fair rate, and his sketehing had then improved considerably in style. He closed work on the 13 th April.
(28.) The following are Mr. Litchfichl's notes on the part of the country he surveyed.
"The Lamkeswar range runs through my work nearly east and west, and is stceper on the south side than the north. The top and higher portions of the ridge are densely wooded, but the valleys and lower epurs ne mostly cultivated. The ground near Gangoliháth is undulating and nearly all cultivated ; and that to the east of Rameswar is like a basin, and also nearly all under cultivation.
"The Pitorágarh road is very steep and bad on either side of Gangolíhath where it descends to the bridges over the Sarju and Rámgangil. A much better road is the one from Lohighát to Pítorfgarh which crosses the Sarju about two miles and a half belon Rameswar. A fair is annually held at lamesmarat a mpot on the right bank of the river just below the junction of the Sarju and the Ramganga. The river is fordable at the juntion, but is very rapid lower down. At Rameswar there are several resting houses and a temple. 'lhere is very good fishing near Rameswar.
"Near the village of Bhameswar there is a remarkable cave which is regarded as very sacred by the peoplo. They believe that there are there four suliterrancan passages leading to the four sacred blaces lameswar, Bagewwar, P'acheswar and Simeswar, and my guide pointed them out to me as he hed me along the cave. This case is so constantly visited by the natives that the stones are as smooth as glass, and the rock perfectly black from the smoke of the torches.
"In the part of the country I surveyed, the villagers were very much harassed by packs of wild dogs which killed nearly every animal they came across. I never nucceded in shooting one, but sone villagers brought ine a pup that they had caught while the pack were devouring a deer. It was of a dirty bulf colour, with upright ears and a bushy tail, resembling a wolf. It refused all food, and died in a couple of days."
(29.) The time available for field operations was necessarily short, and that time was Geneml Review of the fiek operations. further curtailed about a month by bad wenther. Benring this in mind, the general out-turn of work is large; and its execution is, without exception, creditable to the assistants.
(30.) In the lower parganas immediatcly above the Bhabar it is impossible, during the winter months, to obtain carriage and supplies on the spot; for these districts are then deacrted by their inhabitants whoge to carry on their cultivntion and groze their cattle in the Blaíbar. It was, therefore, necessary in these deserted districts to go to the expense of hiring permanent coolies from clsewhere.
(91.) The Bháhar districts in the neighbourhoods of Kíli Dungi and Maldwáni are densely populated during the winter months by cultivators from the hirher districts, and also by a large number of idlers and cattle grazers who come down to enjoy the mild climate of the Bhábar, but who do not assist in its cultivation.
(32.) During the ficld season there were no deaths from disease, and only one by an accident. A khalisi working with Mr llyall fell over a precipice and was killed on the spot.

There were several cases of fever and dysentery, duc probably to the large amount of bad weather experienced during the season; and two men in my camp were attacked by small-pox, but by taking the usual precautions it did not spread. On the whole the health of the party was good during the field season, and the men worked willingly and well.
(33.) Before leaving the subject of the ficld operations, I beg to acknowledge the assistance which has in general been rendered to me by the civil authorities. My thanks are also duc to Captain Campbell of the Forest Department for the great assistance he afforded the Survey while it was being carried over the forest districts in lis charge.
(34.) On returning to quarters, the computations comnected with the triangulation The present recess of 1872. carried on during the ficld scason, and the preparation of the fair maps of the country sketeled at the same time were taken up. The fair maps (four in number) will be ready for publication before the end of the recess.
(35.) On the 30th May of the present recess was announced, to the deep regret both Death of Lieutennnt II. M. Chambers, R.F. of myself and all the other numbers of this party, the sudden death of Lientenant H. M. Chambers,
R.E. He joined us on the 1st July 1871, and simee then, up to a few days before his death, he had been working among us faithfully and well, winning respect aud regard both on account of his attanments, and his amiable and manly character. The Department has lost in him a most promising officer, and I feel sure that his untimely death has been felt as a personal sorrow by all who knew him.
(37.) Since the commencement of the recess the Assistants have been employed on computations and mapping. They are doing gool work, and are giving every satisfaction. The native draftsmen also are working diligently and well.

Extract from the Narrative Report-dated 6th September 18\%2-of Captain J. II ERSCHEL, R.E., Offg. Deputy Superintendent 1st Grade G. T. Survey, in charge No. 1 Extra Party.

The present Report has been delayed in the hope that some results of the last field season's operations, similar to those contained in postseripts to my former reports, might be included in it. Unfortunately I am not able to append them, the reductions beiug still incomplete. It must therefore be contined to narrating the movements of the party, the distribution of the stations of observation, and such details of method as may seem of interest.
(2.) This was the 3 red season during which the Zenith Scetor had been in use. It was, on arrival, to be employed in determining latitudes along the soutlern half of the Great Are, viz. from Cape Comorin to Slichpur; at such intervals, of a degree or more, as the nature of the country would permit or indicate as advautageous. During the two previous scasons it had been used in this way at Bangalor, at Cipe Comorin, at two intermediate localities, and lastly near Ballári (Belary). It remained to fill up the gap leetween the last named station and Elichpur. This has now been done; somewhat less thoroughly perhips than might have been originally hopel for-two of the intervals locing rather large but as uniformly and completely as various difficultics and other considerations would permit.
(3.) Alout this time last year it had heen decided that the Solar celipse which was to occur towards the middle of December slowid be taken advantage of. Previous experience of work of the special kind contemplated led to my being directed to arrange to be present. It thus came about that it was not till the 20th of Decromber that I was free to join my camp in person. The delay howerer was not so great on this aceomit as would seem to be the case, us the first station to be visited was not far short of a month's march from Bangalor, and preparations (not requiring my prescnee) were necessary, which would ocenpy another week or teu days.
(4.) In effect the party left Bangalor in the legiming of November, about $\mathbf{1 5}$ or 20 days later than I should otherwise have directed. This had to be made up by extreme coonomy of time during the following months, as under any circumstances there was plenty to do; and eventually by staying out in intense heat, longer than any body liked. However the work was accomplishecl. 'The gap mentioned above was filled up by 4 groups of stations which I will now proced to indicate more precisely.
(5.) They are named the Darti, \dagger Kodangal, Somtana, Badanon, groups, after the principal stations round which they are respectively situated. The last three of these were, in a measure, obligatory; being stations at which our late lamented comrade and fellow-labourer, Captain Baseri had taken pendulum observations for the determination of the local force of gravity. The first is in the tract known as the Räichar Doáb, between the Tongábudra and Kistna rivers about 25 miles east of the well known Railway Station of the above name. The last is about 20 miles S.W. of Amráoti, in enst Berár. The others are at intermediate points in the Haidarabad Territory. I may here conveniently give the geographical positions of the 9 groups which form the sulbject of this and the provious two reports, as well as of some other points along the same meridian at which latitudes have been observed in former days; with a view to showing the distribution.

TABLE of Southern Arc Latitude Stations.

(6.) In the above table I have indicated the year, and name of previous observer, where there was occasion. It will be understood that the concurrence of Colonel Lambton's name with mine implies that he had observed at one of the stations composing my group.
(7.) Had circumstances admitted of it a group, or station, would have been desirable between A shiti and Lidi ; but an interval of 2^{3} though greater than what has been aimed at, is not execptional, and is of no real consequence.
(8.) 1 mar remark that I have reason to believe that, apart from constant errors (which a precise knowiedge of the instrument which he used and of his method of olserving can alone euable us to surmise-and thesc are not forthicoming) Colonel Lambton's observations are sufficiently good to be included in the list; and that I lave been engaged at intervals in reducing them. The main difficulty is the labour of computation, owing to the want of the requisite astronomical tables, for reducing for the apparent motion of the stars, for those early years. I lope however to be able to deul with this satisfactorily as soon as the current work is further advanced.
(0.) The 4 groups which I lave named as representiug the last scason's out-turn contain 18 stations of observation vi\%. $5,5,4$, and 4 respectively. Of these the precise geodetic positions of the first two groups, viz. those about Daber and Kodangai can alone be considered available for immediate comparixom with the astronomic values-the principal triangulation which was being conducted by Lientenant M. W. Rogers R.E., along the line of the Great Are northwards from Bangalor, haviug becu orertaken at the last named station. The next group in order-that of Sompasa-surromids (but does not inchude) the principal station so named. It was considered on examination to be both unsuitable and difficalt of aseent-in fact impracticable. I could uot but admire, though fecling it undesimable to imitate, the zeal which must have animated Captain Baseyi in accepting such a station for his operations. He had camels however, and I had carts. Whether he was able to take any of them to the top, I do not know;
but I should have had to depend wholly on coolies, and the delay would have been serious. The determination of the astronomic latitude at 4 neighbouring points ronnd about the hill will, I believe, answer the purpose nearly if not quite as well. Of the Badgan group it is sufficient to say that a direct comparison with the geodetic position will be possible at once, at the central station; but at the outlying three which complete it, only whenever these shall be trigonometrically connected.
(10.) I have next to mention a fer changes in the routine of obscrvation, which were introduced with the olject of eliminating constant crrors. (See paras: 16 and 17 of lavt report). To obviate the liability supposing it to exist, of the microscope rum changing its value from time to time, the following rule was framed. Whenever the index minute to be recorded is 2 or 7,12 or 37 \&c., the microscope ruading is to be taken from the upper and lower graduations, both readinys being entered in the record.* 'The record is thus made to supply directly a current clicek on the run, and data for a corresponding correction; and possibly, it continued, for an examination of the graduation. Runs were obtained in this way in the course of work, at about 200 differcut readings; and, as far as they go, they prove that at no single one of these is the graduation notably false: the evidence is insufficient to establish more as yet. They do lowever establish that the "run," though on the whole constant, is lialbe to slight alteration at different stations, thus justifying the practice.
(11.) In my last report I mentioned that a peculiar source of error seemed to exist in the levels of this instrument. Being unable to account for it, but feeling that it directly vitiated the results, I resolved on the first opportunity to put in practice a design J had for reversing the instrument on its pier, and then to take a set of observations in the reversed position. The opportunity was supplied by the Ballíri Treasury. [Bcing just about to cross the Kistua and move far into the Haidarabad Territory a supply of coin was essential, but this I could not get for a long time.] The reversal of which I speak way effected by introducing a small metal buttou under the ceutre of the instrument, after prizing the latter up on one side with a lerer. On lowering it upon the button a condition of unstable cquilibrium obtained in which the instrument could be turned round, so to speak with a finger, with perfect safety, the fect just grazing the stone slab on which the instrument stands. On trial the method proved so satisfactory that I was perhaps too casily convinced, when 1 came to reduce the observations provisionally, that it was imperative to put it in practice at cevery station. 1 am far from saying that the conchusion was wrong; only that later experience maises a donbt whether the constint error which I did detect in that instance will be traceable in all. One thing is certain that, as in all eases of reversal, one or more of the class of constant errors will be eliminated. It will be eminently satisfactory if the practice of reversal, as carried out during the remaining 1 d stations, should prove that the eliminated errors are insignificant in amount. Still more if it should appear that, but for it, the whole scason's work would have contained errors which could not have otherwise been proved to exist. For the sake of past work however, I an in hopes that some definite conclusion may be arrived at which may rescue it from that suspicion.
(12.) As a rule from 30 to 35 stars were observed each night; and two full nights, or even two nearly full ones, were cousidered sufficient for each station-the instrument being in the reversed position on the second. In gencral the stations of a group are within a short march of each other; so that it was possible in good weather, to berin a new station every 3rd night. Thus the Kodangal group of 5 stations occupied only lo nights (February 4th to February 18th) from first to last. The next would have been done at the same rate, but for an accident \dagger in putting up the instrument at the last station. The damage sustained was repaired during the day, but the anxiety and labour of efferting it (thermometer $95^{\circ}-100^{\circ}$) prevented my getting a good niglit's work, and then the weather changed. By still further reducing the number of star's, this speed miglit be kept up; but as it was, nothing but the necessity of getting through the work could have reconciled me to the wearisome round of putting up or taking down the instrument at leust every other day. At every station too-and indeed every night almost-the meridional direction has to be sought out by transits, and adjustments repeated, before the regular work can le commenced, all of which though harassing does not shew in the record. Latterly this had generally to be done with the thermometer at or about 105°. The external temperature recorded at thic last station, on the last night, on commencing work at 7-40 P.M., is 98°; falling however to 80° by 3 A.M. at which hour the Sector and observatory were taken down (for the last time) by moon-light, and a marel of 8 miles effected.
(13.) This station was within half a mile of a Railway station (Nágpur branch): but on the last day-when all the arrangements were complete for breaking up the camp and returning by rail to Bangalor at once-we learnt to our disappointment that we could not use it, but must march down the line to the next principal station, some 16 miles distant.

[^2](1.t.) Thus ended the most exhnusting field season, which I (individually) have experienced. To those of the party who entered upon it six weeks earlier than I did, with a march of 240 miles, the latter portion with its intense heat must have been still more trying. The table which I have given shows that the latitude of $20^{\circ} 44^{\prime}$ was reached, that of Bangalor being $13^{\circ} 0^{\prime}$. This difference represents a direct distance of nearly 550 miles which was of course largely excecied by the wanderings in the Haidarabad wildernesses, where no road ever was. Much of the country traversed was unutterably stony, and unsuited for wheeled carriage, which is almost unknown there. The long distances which had to be gone over to get from one group of stations to another supplied leisure it is true, for the partial reduction of the observations, thus in some masare redeeming the time otherwise so fruitlessly expended; but I may conclude this marrative with the earnest hope, that no party engaged in work of this kind may ever again have to go over so much ground in search of suitable sites.
(15.) I rery much regret that I cannot produce nny final mumerical results. So far as an estimate may go, however, I may hazard the conclusion that a remarkable disturbance of attraction will be found by comparison of the astronomic and geodetic amplitudes between Honur and Daruf. These groups are only $1^{\circ} 18^{\prime}$ apart, yet there seems to be an abnormal attraction producing a discrepancy of nearly 9 " of are-the presumption being that the plumb line is drawn north-wards at the northern station by nearly the whole amount.
(16.) The same presumed effect is somewhat modified at the next group, $0^{\circ} 56^{\prime}$ to the the north, where it amounts to only $6^{\prime \prime}$ or $7^{\prime \prime}$. It is alout the same at Badgaon. This presumption rests mainly on the general agreement (except at Bangalor) of the astronomic and geodetic values at all the southern points and, with a reservation as to the correctness of the adopted ellipticity with which the latter are computed, on the absence of any bias towards one sign or the other in the apparent local defection in other parts of India. I believe this is the largest deflection yet found in this country, which may not be directly attributed to mountain masses.
(17.) There docs not appear to be-so far as I can yet judge-any strong alditional evidence of the sensitiveness of local attraction to small change of place. It is traceable indeed, but not with sufficient distinctness to require me at present to add to what I have alrcady said on this subject in a former report.
(18.) The health of the party has, on the whole, been exceedingly goorl. Two cases of small pox occurred, but both happily recovered. Of these the Native Doctor-Hospital Assistant I. Soveriappen whose name I mention specially as lnving caught the disease in the performance of his duty-supplied one. Vaccination was resorted to to check the liability to infection, at the small military station of Hingoli which we happened to reach at the time. I may meution that this was the only Station which we approachedduring the season.

POSTSCRIPT, dated 30th September 1872.

(19.) The reduction of the obscrvations described in the hody of the report having now been bronght to an end-though mueh remains to be done towards tracing errors in their source-I am enabled to summarize the principal results. It will be convenient to cxhibit them in the same tabular form as before. In explanation of the 'lable which follows it is ouly necessary to say that the Geodetic latitudes of the first two groups are those furnished by Lieutenant Rogers and are based on the astronomic latitude of a point near * Calcuta; while that of Badgaon S . though in the same terms, i.e. derived from the same origin, has been obtained by applying the geodetic amplitude (according to Everest) between Badaion and Deman-the northernmost point to which Licutenant Rogers' operations extend-to the latitule of the latter station furnished to me by that officer. At the time of writing the body of this report-in which it will be scen that I have estimated the difference at Badgion at $6^{\prime \prime}$ or $\mathbf{7}^{\prime \prime}$ insteal of $11^{\prime \prime}$-I had overlooked the fart which has now heen forced upon me by the, diserepmey between the latitule so obtained and that given in Everest's "Meridioual Are" (and which I find mentioned in the 26 th paragraph of Colonel Walker's Report for 1868-69)-a discrepancy of $4^{\prime \prime}$ in latitude generated in the triangulation between Kaliánpur and Calcutta.
(20.) The whole of the triangulation of Southern India derives its latitude element from the astronomic latitude of Calcutta, which was supposed to be nearly identical with that which would be assigned by yood triangulation cmanating from the origin Kalianpur. This supposition was based on the assumption that the existing triangulation, though admittedly inferior, would not prove so misleading as it is now known to have been. The result is important. All latitudes derived from the Calculla origin must be diminished by $4^{\prime \prime}$ to make them comparable, geodetically, with those derived from Keliainpur: or, vice versd, the latter must be inercaued ly 4 ". This is equally applicable where the guestion is one of differences between astronomic and geordetic latitudes.
(21.) There is no virtue in the astronomic latitude of Kaliánpur any more than in that of Calcutta, or of any other point where direct observation might have supplied an origin for computed latitudes; and if we assume that the Calcutta latitude was unaffected by local attraction, then that of Kalianpur is too small by $4^{\prime \prime}$ and a correction of $-4^{\prime \prime}$ must be applied to all values of $\lambda_{o}-\lambda_{c}$ in Northern and Western India while those shown in the present Table need no such correction. On the other hand if we assume that the Kalianpur normal is true, and not locally deffected, all the said values of $\lambda_{o}-\lambda_{c}$ stand unimpeached, while the present ones must receive a correction of $+4^{\prime \prime}$. In any case however there is only a change in local disturbance between Kalianpur and Badgaon of $7^{\prime \prime}$ instead of the $11^{\prime \prime}$ which, for the sake of uniformity, I am obliged to show in the Table.
(22.) The difference of latitude betreen Badgáon and Kaliánpur is $3^{\circ} 20^{\prime}$ and the clange in disturbance is $7^{\prime \prime}$, or about $2^{\prime \prime}$ per degree. 'Ihis is not much when we remark that a change of $1^{\prime \prime} \cdot 7$ may occur (as between XXV and XXVI or between XXVII and XXVIII) in about 8 or 10 miles. But a little further South we find-from Honur to Danur, distant from each other only $1^{\circ} 15^{\prime}$ in latiturle and 3^{\prime} ' in longitude i.e. 98 miles, -a change of $8^{\prime \prime}$. It is absolutely impossible to admit that any errors of measurement can account for more than a small fraction of this amount and therefore the conclusion canoot be avoided that the attraction is distubed in a grossly irregular way, which makes it a matter of indifference, so far as any question of Figure alone is concerned, whether the results are rigorously correct or not.
(23.) And now as to the derree of accuracy to which these may lay claim: I am not in a position to say what the "probible crror" is theoretically; but judging from the accordance inter se of results depending on the observations of successive nights taken severally, it is pretty safe to say that no one of the co-latitudes given above is in error so much as oue-tenth of a second.
(24.) The effect of reversal has been investigated closely, without any more decisive results than these-1st The observations are very slightly biassed by position : but the effect is barcly traceable becanse 2ud They are all subject to errors of greater magnitude, which take efiect in an intermittent way and seem to be due to the positions of the bubbles in the levels. Errors of this class affect the observations in groups, and if a night's work consists of only one or two such groups, the mean result for that night has often a large error from this source, which masks that which might otherwise be more contidently attributed to the orbiculation of the instrument.
(25.) On the whole, there is insufficient justification for any alteration of previous results on this account, but the system of reversal has obviously so much in its favour that in my opinion it ought never to be neglected in future operations. And, with regard to what I have said alove about an irregularity in the levels affecting groups of observations, I suggest the propriety of purposely and frequently altering their readings during the course of work, and of making a re-adjustment of level, say every hour, a part of the routine. The level corrections are the weak point : it is fitting that they should receive the most attention.

Comparison of Astronomic and Geodetic Latitudes. 1871-72.

Note. - $\lambda_{0} \lambda_{e}$ stand for observed and computed latitude, or distance of zenilh from the equator. When $\lambda_{0}-\lambda_{e}$ is \cdot, λ_{n} or the observed distance, is greater than λ_{c} or the computed distance; i. e. The astronomic is \mathbf{N} of the geodetic a'mith, and therefore the plumb-line is detiected towards the Soutli. Viee versh when $\lambda_{0}-\lambda_{c}$ is - (ns above) the phumb-line is deffected towards the North.

ROUGH CHART TO ILLUSTRATE POSITIONS

 OF ZENITH DISTANCE STATIONS1871-72.

Lat. $20^{\circ} 45$

9
k
k
60
6

SOMTANA arour

Lat. $19^{\circ} 5$

KODANGAL GRoup
Lat. 17^{10}

DÁRÚR aroup

Lat. 1615

Extract from the Narrative Report-dated 1st May 1872-of J. B. N. HENNESSEY, Esq., Deputy Superintendent 1st Grade, G. T. Survey, In charge Computing Office.

On 1st May 1871.

Personnel.

J. B. N. Hennessey, Esq., $\quad \therefore$ Deputy Superintendent 1st Grade. W. H. Cole, Esq., M. A., _. Assist. Superintendent 1st Grade. Lieutenant H. M. Chambers, R.E. Do. 2nd Grade.
Computing Branch.

Mr. C. Wood.
Bábu Gunga Pershad.
, Cally Mohun Ghose.
", Kally Coomar.
", Gopal Chunder.
and 8 other native computers including map and record keeper and librarian.

Printing Branch.

Mr. M. J. O'Connor.

(1.) The following changes have occurred in the establishment of the Computing Office, during the last 12 montlis. Lieutcuant H. M. Chambers, R.E., having completed his course of instruction, was transferred to the *Kumaon and *Gurhwal Party on lst July, and Mr. Peychers, Assistant Surveyor 1st Grade, was transferred to this office on 1st September: a vacancy created by dismissal was duly filled, and nominations made to four other computerships of suitable candidates. Also, the retirement of Mr. W. H. Scott on pension, led to the appointment in his place, as head of the Drawing Office, of Mr. G. W. E. Atkinson, Survegor 4th Grade, on 1st April 1872; Mr. Atkinson having joined this Office on lst January 1872.

Calculating Branch.

(2.) The circuits of the triangulation included in the Sironj-Chach quadrilateral having been made consistent, as described in my last report, there remained a large amount of calculation, chietly

Computations.

 in connection with the auxiliary principal stations, to complete the triangulation in question. Accordingly, 268 triangles, entering in groups of 2 and upwards into 110 figures, were subjected to the usual conditions and made consistent by the method of least squares; so that the whole mass of this work now stands reduced by the most accurate of modern processes, which is certainly not more claborate than is due to the very superior quality of the field operations. The computations of the principal stations involved 818 triangles, 115 new deductions (double) of latitude, longitude and azimuth, and verification and correction of several hundred deductions approximately calculated, all in duplicate.Continued.

Sulject

Numbered pages of, and indexed
Mcan readings examined or computed, . .
Abstracted observed angles, . .
Computed zero means and general means,
Compared abstract of observed angles, ..
(3.) The ordinary computations performed are given in the following statement.

Quantity

Computed latitudes, longitudes and azimutlis of Secondary Stations,

(4.) The principal triangulation having been computed, as already described, it became necessary to take the secondary work into consideration: points of this class are frequently valuable for purposes of after survey and their value is rapidly on the increase with the demand for Railways, Roads, Canals \&ic., and the surveys these projects entail. Considerable care and discrimination are, however, essential in dealing with the Secoudary triangulation, so as to secure its full utility on the one hand, and on the other to avoid reduindant calculations, which if attempted would probably lead to more work than could be accomplished. In view of these

Calculating Branch.—(Continued.)

desiderata a general scheme is being elaborated in connection with the subject under notice, and a suitable process has been devised for producing the consistency required in these operations : the method of calculation has been applicd in 3 instances, aud it appears to meet the required want satisfactorily.
(5.) The results compiled for the press are as fo!lows:-1 simple and 3 compound Compilation of Calculations. figures, and 11 quadrilaterals; pages 192 of Synopsis of Principal Stations Latitudes, Longitudes, Azimuths, Differences of Height, Heights and Descriptions of Spirit-levelled Bench-Marks; pages 200 of Observed Azimuths; and 17 pages of Spirit-levelled Stations of seasou 1870-71.
(6.) Besides the compilation of computed or observed results, to be set up in book form, Compilation of data for Numerical Charts, and ex- noticed in para. (5), a somewhat similar procedure is omnution of the same. required for numerical charts and their accompaniments to meet the urgent wants of surveys now in progress. In the absence of such charts, a manuscript copy of numerical tables has to be prepared for each applicant; and this work must ueeds be repeated for adjacent operations at least, at a loss of time and liability to mistakes which all repctitions must involve: add to this, tables without diagrams lose a sensible portion of their value. As an effectual remedy for all these drawbacks, Colonel J. 'T. Walker, r.E., Superintendent G. T. Survey, devised an extension of the details formerly given on charts; so that his modern numerical chart supplies all essential numerical and descriptive facts, chiefly on the diagram or chart of triangulation itself. The numerical chart thus composed is photozincographed, so that facsimiles are arailable at a moment's notice. It will however be readily seen, that the value of these clarts falls to zero, unless scrupulous care is exercised to secure accuracy in the preparation of the single manuscript required for copying or reducing with the camera; in fact, each such chart, of so much value to every Survey Dxecutive, is a diagram illustrated with the epitomised results of n small volume. It therefore follows, that the required compilation of data for Charts and examination of proofs, involves no little labor at the outset, though the result is highly satisfactory and economical in the end. During the twelve-month under notice, 4 numerical charts were compared against the original computations, and data compiled for the following :-

Also, a synopsis of sides for the whole of the Sironj-Chach quadrilateral was prepared, for piotting diagrams to illustrate the "reduction of figures" given in the printed volumes passing through the press.
(7.) Consequent on orders by the Government, a careful comparison was made between Instrumental work. two spirit levels, one by Messrs. Cooke \& Sons, the other by Messrs. Troughton \& Simms, and a suitable line was levelled over by Mr. C. Wood and the undersigned with the vicw of affording data for reporting on the relative merits of these two instruments. The use of a lst-class Theodolite and the departmental method of obscrving azimuths were taught to Lientenant J. Hill, н. в., Mr. W. H. Cole, M. A., and Mr. W. G. Bevcrley. 'Twenty-five sets of observations were taken for time. And meteorological observations, twice on every day of the year, were made as usual at Dehira Dun Observatory, and the reduced results supplied to the reporter ou meteorology, N. W. Provincest; also similar observations were taken at Masúri for about 6 montlis.
(8.) The correspondence, lists and descriptions involved in the protection of the Protection of Stations.
G. T. Survey stations have been persevered in as heretofore, and I need scarcely add that such protection is harlly of levs importance than the primary surveging operations. The station marks are essential for all after surveys, and will serve the required purposes for an indefinite number

[^3]
Calculating Branch.-(Continued.)

of years; rigorously speaking, points once destroyed cannot be restored without a repetition of the original work, and at a corresponding cost of time and money; and it is easily understood, that in the absence of all sucli points, the value of the operations by which they were fixed is materially diminished, at least so far as posterity is concerned. Fully recognizing this fact, Colonel Walker, with the approval of Government, cstablished the system of protection now in force. It is, however, a matter for regret, that what appears a simple duty, so plainly set forth in Colonel Walker's instructions, should entail a considerable amount of work in repeatedly preparing copies of the same lists for local officers, in calling their attention to defective returns or to the absence of all returns, and in repeating explanatious and directions which are either lost or disregarded. I can only hope that in course of time these drawbacks will gradually disappear. During the past 12 months, about 400 letters and dockets have been written on the protection of the G. T. Survey principal stations; 33 duplicate or supplemental lists of 155 stations have been supplied to the local officers, and check lists of 661 stations in 93 districts have been prepared for reference in this office. In all these duties, Mr. C. Wood has rendered valuable assistance.
(9.) The following are some of the miscellapeous duties discharged. Prepared Tables Miscellaneous.
of Stars common to the two 7 -year Greenwich Catalogues; also, T'ables of Colonel Lambton's Zeuith distances, and 2 copies of Synopsis of results of the Quadrilateral Sironj-Chach. Compared, examined and passed for the press the whole of the work, comprising 1,143 pages, mentioned hereafter under the head of "Printing Office." Instructed Licutenaut H. M. Chambers, r. e. in the computations of the department. Supplied data to 23 officers, involving a considerable amount of computation as well as compilation. Lxamined 2 candidates for the junior branch of the G. 'T. Survey, \&c., \&c., \&c.

Photo-zincographic Branch.

(10.) The work performed by the Photo-rincographic Branch is given in the following table, under the heads of Maps, Numerical Charts, Plates and Diagrams, and Professional and Office forms.

Maps

| Subject | | | mhien
 publisled | No. of
 parts | No. of
 copirg
 printed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Photo-zincographic Branch-(Continued.)

Maps

Photo-zincographic Branch-(Continued.)

Numerical Charts.

Subject.			Whenpublished.		No. of parts.	No. of copice printed
Klıágán and Pesháwar triangulation, Rávi and Chináb River triangulation, Great Arc Revision, season 1870-71, N. Section,		.	$\begin{gathered} \text { April } 1872 . \\ " \quad ", \\ " \quad " \end{gathered}$		1	8
		.			3	64
		.			1	65
			Total		26	1375

Plates and Diagrams.

7248 Maps and 547 Numerical Charts were issued doring the year. The forms were expended as fast as they could be printed; indecd the demand was greater than the supply, so that I look forward to the armal of the two additional presses despatehed from England under orders from the Secretary of State for India. Contrasting the work performed in 1870-71 with that done in 1871-72, we have the following:-

Year.	Maps.	Charts.	Plates and Diagrams.	Forms.
$1870-71$	6,465	830	13,205	10,482
$1871-72$	10,131	1,375	4,937	13,655

Though the total momber of prints of all sorts is alout the same in the two years contrasted, a far larger amomint of the chaboriate kinds of work, maps and charts, has been performed : both these sorts of prints are pholo-zincogriphed. Hitherto the forms were zincographed from pen transfers, to admit of introdmeing in new transfers such improvements as were suggested from time to time. It is, however, an advantage, in the cases of certain well-established forms, to takenceratives of them, and this has accordingly been done in those instances where it appeared desirable.
(11.) An abstract of the work exceuted since 1866-67 is given below.

Subject	1866-67 No. of prints.	$1867-68$ No. of prints.	1868-69 No, of prints.	1869-70 No. of prints.	1870-71 No. of prints.	1871-72 No. of priuts.
Maps, Charts and Diagrams,	7,118	7,376	5,538	12.315	20,509	16,443
Forms,	5,152	10,531	10,800	13,571	10,482	13,655

Typographic Branch.

(12.) The work performed by the printing office during the past year and since 1865-66 is concisely stated iu this table,

		1865-66	1866-67	1867-68	1868-69	1869-70	1870-71	1871.72
Pages composed,	\cdots	377	756	641	697	693	819	1,143
Do. printed,	.	53,3.29	93,411	126,696	155,025	106,231	234,828	241,348

the total pages composed during the past year may be subdivided under the following heads.

Drawing Office.

(13.) The introduction of Photo-zincography for the purpose of copying Maps, Numerical Charts \&c., has necessarily produced an influence on the Drawing Office where the originals to be copiod are chiefly prepared: the draftsman now must needs draw under the conditions most favorable for the Photo-zincographic process; so that these two branches, the drawing and copring, are completely dependent on each other. This relation has induced an amount of gencral supervision of the Drawing Office at my hands, and recently when a small expansion of this office, to meet urgent demands, was sanctioned by the Government, the selection of candidates and the organization of this establishment devolved on me, in accordance with the order's of the Othiciating Superintendent. I am glad to report, that the head of the Drawing Office, Mr. G. W. E. Atkinson, is now provided with a promising class of workmen, and I expect they will prove eflicient assistants in time, under his care and training.

No. 4 Extra Party.

(14.) Captain W. J. Heaviside, r.e., received charge of this party from me on 20th April 1872, and as he has been good enough, at my request, to mention the duties discharged by me between 19th September 1871 (the date the party retimned to Dehra Dun from camp), and transfer of the party to him, it is unnecessary for me to make any repetitions here. I may add that the duty of completing the late Captain Basevi's valuable olservations has been entrusted to Captain Heaviside, and that in compliance with the Superintendent's wishes, I shall have much pleasure in assisting Captain Heaviside to become aequainted with the processes followed by Captain Basevi in taking Pendulum observations.
(15.) In concluding this report, I trust I may be permitted to express my acknowledgments of the services rendercd by my assistants. Mr. W. H. Cole, m. a., continues to co-operate with me both cordially and with excellent results, and the general efficiency to which he has now attained earbles him to originate projects of no little value. Mr. C. Wood is as raluable an assistant as ever ; he is always ready to take a share in any duty whatever that may be in hand and he invariably works both quickly and well. Mr. Peychers has proved a uweful and most willing hand and I fully expect that in course of time he will become as competent as he is willing. Hábu Gunga Pershad continucs to render excellent service, and his experience combined with his steadiness and intelligence have conbled him to aequire a familiarity with the duties of this Office which he is always realy to make gool use of. The services of Bánús Cally Mohun Ghose, Kally Coomar, Gopal Chunder and Tarapodo are deserving of commendation, nor have I reasons to be dissatisfied with the remaining computers; some of these are young hauds who have been admitted on such excellent recommendations, that I expect to be alle to report very favorably on their progress in due course. Messrs. Ollenbach and Dysou in the Photn-zincographic office continue to work willingly and effectively. Mr. O'Connor, the printer, is as efficient as zealous in the discharge of his duties.

Total Eclipse of the Sun. December 11-12, 1871.

(16.) This eelipse was observed at Utakamand, Nilgiri hills, Lat. N. 11° 24', Long. E., $76^{\circ} 19$ ', Height alove sea Ievel $8, G 19$ feet, under the directions of Colonel J. F. 'Tennant, R.E., P.R.S., \&c., who was assisted by Captain J. Waterhouse from the Surveyor (encral's Calcutla Ollice and by Captain J. Herschel, R.E., aud myself from the Great Trigonometrical

Total Eclipse of the Sun. December 11-12, 1871.

Survey. Colonel Tennant has already written a report to Government on the expedition which he conducted, besides his communication to Dr. Huggius which appeared in the monthly notices of the Royal Astronomical Society, vol: XXXII No. 3, January 1872; in addition, I have my own report to Colonel Tennant on the part of the operations assigned to me: it may therefore be sufficient to make a few extracts from these papers, confining myself generally to those portions which touch on my own duties.

Extracts from Colonel Tennant's report to Government.

"The photographic operations were under the general charge of Mr. J. B. N. Hennessey of the "G. T. Survey, with whom was associated Captain Waterhouse, for the special purpose of attending " to the technical manipulations."
"The lens employed was one of Dallmeyer's largest "Rapid Rectilinears" of 4 inches ($10 \mathrm{c} . \mathrm{m}$.) " aperture, and alout 33 inches ($83.7 \mathrm{c} . \mathrm{m}$.) equivalent focus. This was attached to a cylindrical metal "camera, which was mounted on an equatoreal stand, and a clock was provided to keep the camera auto" matically up to the object to be photographed"
"The camera was furnished with 6 dark slides, each to hold a plate 5 " square." * * *

Extracts from Mr. Hennessey's report to Colonel Tennant.

(5.) "After due discussion and consideration Colonel Tennant decided that we should try to " securc 6 negatives during totality, and that the successive periods of exposure should be $5^{\circ} 10^{\circ}, 15^{\circ}$., " 15 ', 10 , and $5^{\prime \prime}$; this conclusion of course assumed that the sliy would be free from cloud or mist. As " will be seen, these periods afford intervals of 10 seconds between consecutive nergatives to change the "slides, besides n period to spare at the commencement and end of 5 seconds.
(6.) "Subject to these conditions we procecded to rehenrse our pats, Captain Waterhouse "changed the slides and opened and shut them. Mr. Willis \dagger counted seconds 1 to 130 audibly, following "the hand of a chronometer placed before him, while I made the required exposure by uncovering the " lens, and also noted the limiting seconds. After a moderate amount of practice we found ourselves able " to carry out the prescribed programme leisurely and with certainty.
(7.) "I may here add a few words with respect to the counting. My agreement with Mr. Willis " was this : some 10 or 15 seconds before totality I was to call out 'mark $0^{\prime \prime}$: on this he should keep "repeating the word "nought" as the hand marked a complete second; mennwhile I was to watch the
" sun and to give the signal "count," directly totality occurred; when in place of saying " nought,"
"Mr. Willis was to commence counting the scconds audibly, beginning with $\mathbf{1}$ and going on to 130 , or
" until I stopped him. I had a small paper board strapped to the back of my left hand on which I record-
" ed the limiting secon's of each exposure. These arrangements were found simple and eflectual, and under
" favorable circumstances they wonld furnish the means of noting with sowe accuracy the times when tota-
" lity begmen and ended. They however involve a very moderate amount of mental arithmetic from tho
"indiridual in uny place, but the tax is so limited that most persons could do the needful after a little " practice.
(8.) "The morning of the 12 th December dawned with but little promise of affording us a clear " view during the coming totality. The sky was free fiom cloud and the stars shone brightly at 2 a.m.; " a couple of hours hater we were enveloped in a mist, which nt times was so dense that objects ouly 50 yards "distant were hardly visible in the gray light of dawn :and as the licht increased and we ceuld see through " little gaps in the fog, there appared floating loclow an codless mass of clouds, which the brisk " suutherly brecze kept driving against us. Notwithstanding we went through the last rehearsal of our " parts, and at 20 minutes to totality as agreed on 1 gave Captain Waterhouse the sigual to commence "immersing the plates.
(9.) "Some 10 minutes before totality I focussed the camern on the solar eusps, and about 5 " minutes later we were all at our posts: the first slide was in its place, the instrument was set and being "driven satisfactorily, and we were ready to perform our parts of permitted to do so : meanwhile the mist " kept streming persistently against us; it came up elinging to the surlace of the hill and in depth it "prohably did not extend beyond bo feet alove us, but it was sufficientl; dense to make the distant hills "appear quite dim and in addition it varied in density from one moment to mother, thus making the task " of timing the exposures hazurdons if not hopeless.
(10.) "In expectation of a clear sty, I had purnosed availing unself of the ample leisure I should " have enjoyed, to wateh the shadow of the celipse, to study the ceroma with the view of making aketches " subsequently and in fact to examine and note all that nppeared ; hut the presence of the mist mule it " essential that I should devote my attention entirely to the duty of exposing. It was nlso plain, that " under existing circumstances, the progrmme detailed in para. (5) should not be adhered to, and I resolved "to act to the best of my judgement in tho matter.
(1.1.) "As totality approached I was surprised while looking at the sum to find an npparent " absence of all mist; this however was by no means real, for the fog appeared phainly, driving over us as

[^4]
Total Eclipse of the Sun. December 11-12, 1871.

" before, when I directed my view some 10° below the sun. I accordingly kept a steady watch in this
" direction during the periods of exposure, and I am thas able to stuto with certainty, that throughout
" totality the mist was driviug over us in one continued and generally diminishing stream, which varied in
"density but which was alwafs plainly visible. Watching the mist in this manner and guided by its
"density in regulating the exposures, 1 opened and closed the lens for negatives Nos. 1 to 4 , so that the
" durations of these exposures are by no means comprable. Subsequently I resolved to malee the longest
" exposure that could then be afforded, preceding this by one of 5 seconds. This lead to Nos. 5 and 6 ,
4 the latter of which was barely within the limit of totality. The times and periods of exposure, the
" former reckoned from commencement of counting are as follows:-
Duration,
$\begin{array}{ccccc}\text { Negative No. 1. Was exposed } & 4^{\prime} \text { to } & 19^{2} & \text { from commencement of reckoning (i.e. totality nearly.) } 15^{\prime \prime} \\ \text { Ditto } & \text { 2. do. } & 34 \text { to } & 44 & \text { dito }\end{array}$

Ditto	2.	do.	34 to	44	ditto	ditto	10
Ditto	3.	do.	55 to	63	ditto	ditto	8
Ditto	4.	do.	74 to	80	ditto	ditto	6
Ditto	5.	do.	88 to	93	ditto	ditto	5
Ditto	6.	do.	103 to 123	ditto			

"I eatimate that when Mr . Willis counted 1 , the totality had lasted $\frac{3}{4}$ second, hence ajproximately the " duration of totality was about 122 seconds.
(12.) " Jt is hardly necessary to add that I accompanied Captain Waterhouse into the dark room, " or that I anxiously looked on while he developed the negatives with his usual skill and care. The " addition however enables me to offer my testimony of the fact that the negatives were all fully developed,
"and this may be desirable in presence of the circumstance that the longest exposed nerative No. 6
"exhibits the least details of the corona; a deficiency which is most nearly approached in No. 5 which had
" the shortest exposure : moreover during the exposires of Nos. 5 aud \mathbf{G} the mist was least dense. I may
" here add fur what it is worth, that so far ns 1 can conjecture 8 seconds exposure would have been ample
"at our station had a clear sky prevailed.
(13.) "Though as already stated I was deterred from looking steadfastly at the appearance of the " eclipsed sun, I yet took every opportmity of glancing at it and did so for perhaps 2 or 3 seconds at " a time. Thus viewed, the general outline of the corona looked like a bund glass or figure 8 , in which com"parisons the 2 re-eutering angles must he understoon as exugrgerated much beyond the reality. There " were no conspicuons prominences; but of these visible, the ones about the vertex were the strongest. I
" baw no rays or streamers stretching greatly beyond the monn. and so firr na I could estimate, the entire
" phenomena of the corona were included within an annmlus of half the monn's dinmeter around her edge.
"In brief, what I remembered to have seenduring totality is exhibited in the nematives Nos. 1 to 4. They
"contain details of which I was unconscious, but I am not aware that they are deficieut in any respect.
(14.) "Before parting with the set of six negativos I examined them as closely ns the dull light of "a cloudly afternoon would permit, and I was maturally struck by the closo resemblance they hore to one
" another, for 1 had been led to expect that the coroma shifted from side to side, or at least that certain
"of its features altered considerably in some way with the moon's progress. This jrogress certainly does
" not produce any readily apparent change in the coroma nor yet are the rays most aboudmut in the
"radial prolongation of the prominences; in fact a prominence is visible almost exactly under ench
" angle of the two min rifts, which rifts are nearly North and South. As to the rifts they exist only in
" the absence of mys. Thus the two main rifts are contlinch by the terminatim of mys, which just at the
"reentering angles where they nre slurtest, jut out some 5 or \mathfrak{i} minutes fitom the moon's edge. The
" longest mass appen loyond the lower limb, and here thes are full 15 minutes or more in length. lingeneral
" the rnys are rading from some point in the eclipsed boty; unless a possible bundle in, I think, the lower
" and right hand corner is an excejtion. The tijis of theso rays present tho curiven appearance of a sbeaf
" of corn when its cars are blown over by the wiud.
(15.) "A part from the local esamination which no doubt ench set of negntives mill undergo, it " appears highly desirable that all the sets taken at Baikil, A vanaslis, Cogion, Australia, Dodnhetta, de.,
" should be collected together and compared by competent cxaminers; it noed lutely le athed that such
" comprison should be made between the neratives and not loctween prints, for the liatter canoot be relied
"on as sufficiently exact representations of their orginals. The Baikulanl Donlabetta negatives were taken
"with similar instruments and will therefore readily admil of comparisen; it will be interesting to enguire
" whether the latter neyatives, taken at a considerable height differ in any respecta from oll tho other
"sets. Colunel Teunant's method of mounting will secure the negatives from ordinary risks."

Extracts from Colonel Tennant's letter to Dr. Huggins.*

"Now to the photngraphs. We hare had some glorious mornings. Testerdny Horachel and

- Monthly Notices of the Rofil Aitronomical Society Vol. XXXII. No. 3. January 1872.

Total Eclipse of the Sun. December 11-12, 1871.

"thick, and rain had ceased, but a wind had sprung up from the S.E. (I believe), which, of course, " kept a driving mist on the hill. The Sun seemed to lose as much porver by obscuration as it gained " by rising, and was powerless to disperse this as it would otherwise hare done, and our instruments " were dripping. This I had thought possible in such a casc, but I had hoped that the fine weather had " set in, as such mist seems abnorinal so late in the season. Very few minutes after totality the mist " vanished from the returning heat.
" Under these circmustances one might have thought photographs hopeless, and I went despond"ingly to asle for results. I found, to my great astomishment, that they had six apparently good ones, "which is due to Hennesser, who cxposed, having thrown over our programme, and increased his ex" posures, while Captain Waterhouse, who did the photographer's part ably, backed him by rapidly " changing the slides."

Extracts from Colonel Tennant's report to Government.

"From the original photographs Captain Waterhonse has made some positive transparencies on "glass which give a good general idea of them. I take, however, the following descriptions from the " original negatives, some of which give a great deal of detail which is lost in copying.
"No. 1 is perhaps the most perfect. It had an exposure of 15 seconds near the commencement " of the eclipse. I have formd that the middle of the eclipse was nt. 1 th. 27 m .4 s . Greenwich mem time "according to the tables. Mr. Hennessey, who had most ficilities for marking the duration of totality, "gives it as a little more than lit seconds. From these data, and the reckoning formerly given, I
 "The disk of the mon is surrounded by a narrow, very luminems border almost indistinguishable from "the prominences, but whose inner edge is sharply defined ly the moon, except in one or tro places, and "whose outer one varies very much in distance from this, and is much less shmeply defined. There is " much encroachment of light on the clank surface of the moon, and this is greatest at the places of "prominences, and especinlly at the lower part of the dise where the solar elge is vearest. Here the "encroachment nearly obliterates the dise in some places, and presents a very marked outline; here, too, "the brilliant band is brightest aud widest, and its onter edge most defined. Outside this is the coronn, "at the bottom are seen several rays with ill-defined edges. One of these to the right (S) of lowest " point is markedly curved; the onter end pointing S. W. 'The grecit rift to the south, and a less marked " one to the north, each have a mominence at the base;-close to the vertex is seen the simall rift which " 6 was spectroseopically examined. There is structure clearly seen in the whole of the corom, and, "except in the case of the curved ray of which I have spoken, it seems to me that there is a tendency "to radiate from prominences. Some of the longest rays may be fiantly traced to a distance of $\frac{3}{\text { the }}$ of "the moon's diameter.
"No. 2.-It is evident, on looking at this, that the chemical action has heen much less : the "encronchment of the general light on the lomar dise is much reduced, while that of the prominences is "more conspicuous, the liroal band of light at the botton of No. 1 givine an appearance of a well "defined portion of corma has disappeared, and the light unw decreases gradually from the mon's edye. "The outline of the lower elge of the south rift is sbown ay mere curvel; but comp:rison shows that "this is not so much a real change of lom, as the result of the fainter portions locing less depicted. The "radial stracture of the coroma is as marled here as in the last photograph, and the same tendency to "stream from prominences may be recognized with perhaps more facility. The exposure may be con"sidered to have lasted from 1 th. 26 m .3 s . to $1+h .26 \mathrm{~m} .4 \mathrm{~s}$ of Greenwich menn time. There is a "good deal of fog about the plate.
"No. 3. Were the active effects nre eridently between those in Nos. 1 and 2; the outline of the " south rift is restored very much to its appearance in No. 1 ; and the photograph otherwise requires $"$ little remarls. It may be considered to have been exposed from 1 Hh . $26 \mathrm{~m}, \overline{5 s}$. to 14 h . 26 m . 6 s . of "Greenwich mean time.
"No. 4 is a good deal like No. 2, save that the lower prominences, being more covered, the "glare there is much less. Placed on a dark ground, and viewed as pwsitices, these tro photographs are " very similar; viewed as transparencies, No. 2 has deeidedly more detailand extent. It may be considered " as having been exposed from $1+4 \mathrm{~h}$. $27 \mathrm{~m}, 17 \mathrm{~s}$. to 14 h .27 m . 23 s . of Greenwich mean time.
"No. 5.-This has less detail than any of the preceeding photographe, and there is a want of "sharl, definition, showing that there was some wotion of the canera relative to the olject. This may " be due to the action of the clock casing, as I have mentioned it did during the exposure of plate 6 , " mod I andisposed to think it is so, but the short exposure makes the effeet sumall, and leares this "photograph available as evidence of the general permaneme of the corona doring totality. It may be "considered as exposed between 1.41 .27 m . 31 s . nud 14.4 L . 27 m . Bus. Greonwich mean time.
" No. G.-As I have mentioned before, the clock manifestly censed neting during this exposure. "Louking at the upper elpo one sees the sucesasion in which the peaks of the chromosphere appenred, " and it is evident that a momentary exposure would have sufficed for depicting these"

Extracts from Colonel Tennanl's Report to Government. Conclusions.

" Spectroscope and polnrisegpe have so far ngred in assigning a solar origin to the main pheno" menou of the coroma; mel, if we examine the photogrophe, we shall hare the sume result. It is quite
"impossible not to connect the sonth prominence with the corresponding rift, at whose base it lics, nad "whose sides clearly in a general way radinte from it. A compurison of No. 1 , and the later photo"graphs, shows that the comection lasted, nud that in fact, the moon passed over the coroma. Nos. 1 "and 3 do not show nay changes in the forms and positions of the portions of the corona, and an "examination of the later photugraphs, Nos. 4 nad 5 , though the definition is not so perfect, quite "supports this. That on the true solar corona is superposed an atmospheric phenomenon is probable " enough; but, ns I suid in 1868, the curona is solar. It is the atmosphere of the sun in its colder parts. "It is, indeed, to some extent self-luminous, but mainly it shines, as I reported in 1868, by reflected " light."
"The following, then, seems to be the constitution of our sun. There is a uucleus which gives out " continuous white light like solid or liquid bodies, and even dense gases: surrounding this is a layer of " heavy rapors intensely hented, but far less so than the nuclens; in which, if a state of cifuilibrium could " exist, the henvier vapors would be lowest. Above this is a layer of glowing hydrogen of very slight "density accompmied by that gas which gives the line D_{3}. Still further up these gases in a cooler state " become mixed with what gives out the green line K 1474 , and lastly, that alone seems to remain.
" Of the solar nucleus we know little certninly, possibly we never shall know much, as it is " slmost hidden from our view, but we do know that its temperature is so high that we have reason to " belicre that unless subjected to enormous pressure every terrestrial element would be vaporized. "It has been estimated in millions of degrees, but such statements can convey no intelligible idea. We "do not know anything of the substance producing the chromospheric line \mathcal{D}_{3}. Protessor Respighi's " observations at Podoocotta would go to show that it is inseparable from the liydrogen of the chromo" spherc. The sulbstance, however, producing the green line K 1474 , is one of the must interesting. We " not ouly meet the cvidence of its existence in the sun, but when the higher layers of our own atmosphere " nre renched we meet, at the great height at which Auroras take place, a substance which gives out a " light appareutly identical, and again Angström nod Kirehhoff have assiguod the power of giving this " line to the vapor of iron. It scems nearly impossible that at the low temperature which we know must "exist in the upper strata of our atmosphere there can possibly be iron vapor. Is it possible that iron "possesses the property of occluding the gas, whose distinctive line is K 1474 ? If it be so, this gas must "be under ordinary circumstances of temperature and pressure almost immeasurably rare."
MONTHLY Meteorological results taken from the Register kept at the．Office of the Superintendent G．＇r．Survey of India，Dehra Dun．

FEAR \＆ MONTH．	Baxometer．						Higerometer．				Therimometer．								WIND．		Ciove．		Rain．	
	$\begin{array}{r} \text { h. m. } \\ \text { at } 9 \mathrm{~A} . \mathrm{M} . \end{array}$			$\begin{aligned} & h . m . \\ & \text { At } 3 \text { 30 P. 3. } \end{aligned}$							Dry Bulb．					Wet BuJb．			立				\cdots	
					－	至					$\begin{aligned} & \text { Mux : in Sun's } \\ & \text { ruys. } \end{aligned}$			$\begin{aligned} & \dot{\#} \\ & . \ddot{B} \\ & \dot{\#} \end{aligned}$			苞							
1871																								
January	27.852	27.681	27774	27.769	27.629	$\begin{array}{r}27 \\ \hline 689\end{array}$	445	－677	$45 \cdot 2$ 49 4	－ 416	$85 \cdot 5$ 90.1	30.0 396	$75 \cdot 2$ 79.2	35.6 43.4	53.7 $6 ะ 0$	61.8 66.7	$33 \cdot 0$ 39.5	$48 \cdot 9$ 53.1	S．E．	． 00	2	3 5	7	$\begin{array}{r}\cdot 46 \\ 2.54 \\ \hline\end{array}$
February	－8．49	614	－719	${ }^{\cdot 763}$	505	－630	49.6	－664	493 47 4	－ 45 .313	901．	396 402	79% 00.0	$43 \cdot 5$ $4+5$	$6 * \cdot 0$ 67.3	6167 60.0	34.5 30.1	531 5×7	S．E．	.00 .00	4	3	7 0	2.54 .00
March	751	－ 505	－661	－657	$\cdot 4517$	－515	47.7 57.0	－ 412	56.4	－262	208.2	498	91.7	51.5	76.3	71.2	45.8	58.9	S．\dot{W} ．	$\cdot 01$	3	4	4	$\cdot 00$ $\cdot 4$
April	705 657	－536 .374	－609	-587 .543	417 243	－ 43	37.6 636	－ 545	61.6	$\cdot \cdot 156$	1105	568	96.9	60.5	$79 \cdot 3$	7 F	48.7	678		－01	4	6	14	$\cdot 43$ $3 \cdot 4.4$
June	－541	－2．11	－388	－436	－183	－306	7－12	－833	75	713	1096	66.7	968	665	81.5	8332	657	$71 \cdot 1$	N．E．＂\＆S．	$\cdot 00$	9	7	24	21.34
July	－520	$\cdot 163$	－370	$\checkmark 770$	－189	－311	75.7	－66	75：3	－859	103：	698	89.0	70.7	70.6	81.2	50.8	71.6		$\cdot 00$	8	9	29	$36 \cdot 32$
August	－589	－343	－439	－488	－309	373	745	495	760	81．	103.2	623	84.9	704	790	812	6.9	71.3		$\cdot 00$	9	8	28	38.39
September	－652	$\checkmark 430$	－537	－ $\mathbf{6} 62$	－296	－4．35	7－5	－805	730	745	$101 \cdot 2$	61.8	$89 \cdot 2$	05.1	78.3	796	60.4	72.5	N．\＆W．	$\cdot 00$	5	5	18	11.03
Oetober	－801	$\cdot 551$	$\cdot 672$	＇692	－476	－578	384．	58：	600	$\because 75$	$99 \cdot 9$	47.9	86.1	53.1	71.7	737	43.2	50.5	N．W．	no	0	0	0	． 00
November	． 864	$\cdot 677$	787	783	－582	691	$48 \cdot 1$	－514	183	$\cdots 9$	91.9	36.0	$81 \cdot 4$	40.8	638	$6 \mathrm{t} \cdot \underline{1}$	33.7	520	N．	＇00	1	1	0	－00
December	28－016	$\cdot 700$	．822	＇851	－618	$\cdot 745$	41.0	． 653	$15 \cdot 3$	－498	603	$28 \cdot 3$	77٪	$41 \cdot 1$	550	603	34：	478	W．	－00	3	4	3	1.32

ABSTRACT OF RAIN－FALL AT DELRA DCN G．T．SURTEY OFFICE FROM 1861 TO 1871.

			1861.	1862.	i863．	1864.	1865.	1866.	1867.	1868.	1869.	1870.	1871.
MONTH．			Inches．	Inelics．	Inches．	Inches．							
Jonuary．	\cdots	．${ }^{\prime}$			3.31	－36	1.93		$1 \cdot 25$	269	$1 \cdot 67$	－04	9.46
Februmry，	\ldots	\ldots			610 1.69	$2 \cdot 18$ $\cdot 32$	618 407		$1 \cdot 16$ $1 \cdot 43$	$7 \cdot 3$ 1.74	$1 \cdot 13$ $7 \div 5$	1.39 4.13	2.54 $\cdot 00$.03
Murch， A pril，	\ldots	\cdots		－	169 33	－ 21	4.67	2.50	$1 \cdot 43$ -7.4	$\begin{array}{r}1.74 \\ \hline 84\end{array}$	$7-15$ -11	4.13 1.84	$\cdot 00$ $\cdot 43$
May，	\ldots	．．．		－	－31	253	$6+5$		$3 \cdot 21$	－82	． 00	.31	3－14
Jume，	\ldots	\ldots	12.19	－	$12 \cdot 19$	\cdots	$2 \cdot 10$	8.21	$9 \cdot 9.4$	$6 \cdot 83$	2.46	$7 \cdot 04$	24．34
July，	\ldots	．．．	2453	2866	$36: 16$	37.60	$19 \cdot 12$	34.75	28.69	21.26	20.66	33.05	8632
Aurust，	\vdots	\ldots	5 ± 75	－15 2	21.78	280	2940	2：470	$23 \cdot 63$	12．85	16．70	$28 \cdot 45$	$38 \cdot 39$
september，	．．．	．．．	931	20.20	$2 \cdot 19$	7 － 1	10.06	560	381	3.02	23.56	13.78	11.03
Octaler．	．．．	．．．	－02	5 Sz	（i）	169	－00	＇20	$\cdot 93$	． 05	9.39	$1 \cdot 39$	． 00
November，	\ldots	\ldots	． 01	－01）	92	$\cdot 17$	－00		－00	－00	． 00	－00	.00 1.02
December，	．．．	\ldots	－00	－00	－611	＇03	402		$\cdot 00$	$\bullet 18$	1－22	． 01	$1 \cdot 32$
Tomal	\ldots	\cdots	100.81	（10．00）	83：11	7537	85.58	7406	7500	$57 \cdot 56$	7704	91．43	118．27

Note．－Where blanks occur no record is t：racuming．Height of Burometer Cistern nbore Mcan Sea Level，2932•41 fuct．

Annual Return of amount of Work executed in the Drawing Branch of the Offlee of Superintendent G. T. Survey, from 1st May 1871 to 30 th April 1872.

Degcription or Work.	Rrmamin.
8heet No. 9 of Lovels in the N.W. Provinces (Compilation). Vide Annual Return $\left.\begin{array}{c}\text { for 1870-71, }\end{array}\right\}$	For Photo-zincography.
Do. No. 11 ditto dito dito ditto,	ditto.
Do. No. 14 dilto ditlo dito ditto, ...	itto.
Do. No. 15 dito ditto ditto ditto, ..,	ditto.
Do. No. 1 Proliminary Chart of the Great Indus Serics,	ditto.
Do. No. 2 ditto ditto dito	ditto.
Do. No. 3 ditto ditto ditto ...	ditto.
Do. No. 11 ditto ditto dito	ditto.
Do. No. 12 ditto ditto ditto	ditto.
Do. No. 1 dito ditto of the Kaslumir Series. ...	ditto.
Do. No. 4 ditto ditto ditto,	ditto.
Do. No. 6 ditto ditto ditto,	ditto.
Do. No. 5 ditto of Triangulation in the Northern Portions of the Bombay $\}$	ditto.
Do. No. 6 dito ditto ditto ditto, .	ditto.
Do. No. 8 ditto ditlo ditto	ditto.
Do. No. 1 ditto of the *Sutlej Series,	ditto.
Do. No. 2 ditto dito, ...	ditto.
Do. No. 3 ditto ditto, ..	ditto.
Do. No. 4 ditto ditto,	ditto.
$\left.\begin{array}{cccccc}\text { Preliminary Chnrt of the Jogi-Tíla Series,-Minor Triangulation along Rávi and } \\ \text { Cliníb Rivers, } & \text {.. } & \ldots & \ldots & \ldots & \ldots\end{array}\right\}$	ditto.
Do. of the North-West Himalngn Series, Season 1850.51,	ditto.
Do. of the Bider Longitudinal Series, Senson 1869-70,	ditto.
Do. ditto ditto Season 1870-71,	dilto.
Do. of the Gurhaigarh Meridional Series, Sensons 1858-60,	ditto.
Do. of the Rahún Meridional Series, Senson 1856-57,	ditto.
Do. of the Peshúwar and Khingín Triaugulation,	ditto.
Do. of the $A_{\text {ssaim }}$ Valley Triangulation, Scason 1870.71, ...	ditto.
Prepared a Chart of the Násik Trinngulation between Lat. $19^{\circ} 30^{\prime}$ and $20^{\circ} 30^{\prime}$, and $\}$ Long. $73^{\circ} 30^{\circ}$ and $74^{\circ} 30^{\prime}, \ldots .$.	For Computing Ofice use.
Do. en Extract from the Preliminary Chart of the Grent Are Serics Northern Section,	ditto.
Do. an Estract from Khanpisira Series between the parnllels of 20° and $\mathbf{2 2}^{\circ}$,	ditto.
Do. Shect No. 1 Map of Router in Northern Indin (Compilntion), Scale $\left.\begin{array}{r}\text { 1 inch a } 16 \text { miles, Lat. } 33^{\circ} \text { to } 38^{\circ} \text {, Long. } 68^{\circ} \text { to } 76^{\circ},\end{array}\right\}$	For Photo-zincogrnply.
Do. do. No. 2 ditto ditto " 33° to 38°, 76° to $84^{\circ}, \ldots$	ditto.
Do. do. No. 3 ditto ditto " 28° to 33°, 66° to 76°, ..	ditto.
Do. Rough Skelaton plan of the town of Mangalur, ...	For Mnjor Branfill.
Do. Routo Map from Pnnjáb to Tarlukshán, S cale 1 inch $=16$ miles, \ldots	For reduction by Photography.
Do. a trace of the Chanba Territory (on lineu) with lills, Scnle 1 iuch $=2 \mathrm{miles}$,	For Photo-zineograplyy.
Do. a trace of the Bilaspur Meridiomal Sorics,	For use of Bider Longitudinal Series party.
Do. a trace of Minor Triangulation extending over the Nílgiri and Kundar Mountains (on linen),	For Compuling Office use.
Do. a trace of tringles extending over portion of province of *Coimbator, ...	ditto.
Do. small Chart illustrating Spirit Levelling operations section VIII, season $\begin{array}{ccc}1870-71, \text { ecale } 1 \text { inch }=20 \text { miles, ... } & \ldots & \ldots\end{array}$	For Ploto-zincograply.
Do. Index to the Level Sheets, seale 1 inch $=32$ miles,	ditto.
Do. General Skeleton Map of Dehli, aenle 1 inch $=16$ miles,	ditto.
Do. Map of the Country round Dehli, srale 1 inch = 2 miles,...	ditto.
Do. Plan of the battle of Delhli in 1803,...	ditto.
Do. Plan of the City of Dehli,	- ditto.
Do. Plane eluewing the position of British army before Dehlifrom June 8th to September 14 th $1857, \ldots$	ditto.
	ditto.
Do. a copy of the ground plan and plan in eleration of the G. T. Sursey Olfice ?	For Oflice use.
$\left.\begin{array}{l}\text { Reduced and incorporated addifimal Iriangulation in } 3 \text { eopies of the G. T. Survey } \\ \text { Index Chart for it y completion to } 1 \text { st May } 1871, \ldots . \quad \text {... }\end{array}\right\}$	To be engraved.
Examined proofs of Preliminary Charta, Maps \&c., ant other miscellancous dutice, ... Colored 4,703 copies of Mups of rarious kiuds,	

Memorandum on the Trans-Himalayan Explorations for 1871, by Major T. G. MONTGOMERIE, R.E., Deputy Superintendent G. T. Survey, in charge of the Trans-Himalayan Explaring Parties.

The explorations which I have selected for this year's report have been made by explorer No: 9, during more than one expedition : it is not expedient to refer to him in any way that would lead to his identification, as any such indications are apt to be conveyed to frontier places, and in some cases have caused great inconvenience to the explorers by obliging them to start by out of the way routes \&c., and occasionally lave hiudered them wheu far beyoud the frontier by means of letters sent from our frontiers.

The explorer, for one portion of his work, made his way from Dárjiling, passing through Sikkim into (Great tilbet; it is not however necessary to refer to his journey in detail until he got beyoud what Sir William Hooker called the Wallangehoon pass, as up to that point Sir William has already given us an admirable description of the country.

The explorer, on trying to pass into Tibet, was as usual stopped and told that he would not be allowed to proceed Farther, as he was not known to any one, nor able to give any satisfatory evilence as to his being what he stated. He was consequently rather in despair, but was fortunate enough to ingratiate himself with the clief official of a large Sikkim district whose wife happened to be very ill. I have always made my explorers take a supply of medicines with them, mostly of native kinds, with only a few ordinary European sorts to present to people on their journeys. In the present instance the explorer had also provided himself with a Hindi translation of a treatise as to using these drugs, and when he heard of the woman's illness he offered to give her some medicine if he was allowed to see heer and hear as to her sufferings \&c., his offer was at ouce aceepted and the explorer haring seen her searched his book until he came - across some disease with the same symptoms as she had and he then boldly prepared the medicines directed and gave them to the woman according to the instructions, and awaited the result in not a little trepidation. In a few days time the woman becance wonderfully better and eventually a cure was eflected very much to the astonishment of the amateur practitioner. The explorer was treated with marked kinduess and hospitality from the day the woman hegan to improve; he then again urged his request to be allowed to pass into Tibet. The headman said he would be glad to give him permission but that it would be of no use as he would be again stopped by another otticial before he advanced very far unless he had some one to answer for him. The explorer however continncd to urge his point and at last the official said he would himself be his security, and he finally sent one of his own meu with the explorer who passed him through the places where he was likely to be stopped.

The explorer consequently marched ọn without muy farther interruption, except the ordinary ones at custom houses, where his fhegrage was strictly searched ; fortunately his instruments were so well concealed that they were never discovered.

From the Tiptn-La-tle Wallangchoon pass of Sir William Hooker, probably so nuned from the village south of it, which the explorer gives as Wallungsum-he made his way in two marches to Tashirak. The road was a difficult one, the ground north of the pass being very elevated and barren, so that both food and fuel had to be carried on yaiks for the use of the party.

The Tipta-La was covered with snow; it is on the watershed of a very high range that runs nearly east and west forming the boundary between Nepal and Lhása.

Tashinak is a large standing Bhotia cncampment on a feeder of the Arun river, which rises in a glacier to the west, and not on the nain stream of that river as was formerly supposed; it is 15,000 feet above the sea. Marching north, the explorer crossel the Nili-La pass, and passing a large Líma monastery reached the Shiara villaro of some 00 homses, which is under a Thanahedír of the Thenk or Tinki district, gencrally known as 'liukijoug after its fort (jong). Here his baggage was very closely searched, and it was only by means of the man sent lyy the Sikkim official that he was able to advance farther. After miny inquiries were made he got a pass to travel to Shigatze, and being fairly in Tibet he was never stopped aqain. ILe made his way first to Lámádong, a village of 50 or 60 houses, arriving there on the th Scptember. Before reaching this place the explorer had latterly seen no cultivation exerpt that of ludian-com in small quantitice, but at Lamadong itself there was a good deal of what and pease and round about several other villages could be seen equally well cultivated; all these villages were on or near the banks of the great eastern branch of thie Arun river, called-the Khantongiri river, which comes from the cast.

The next day he urrived at another small village with plenty of cultivation, all tending to show that he had again reached a warmer climate, Lamádong being 13,100 feet above the sea.

On the 6th Scptember he crossed the Tiuki-La pass and after a trying march reached the village of Tasichiraug on the bank of the Chomto Dong lake which is a fine sheet of water

A large Tibetan Lako.
at an elevation of 14, 000 feet above the sea. This號 existence in itineraries collected by Mr. Horgsou, Dr. Camplell, \&c. The explorer found the water very clear and pure, and very good to drink: he and lis party used it and were told that the inhabitants took it in preference to that of the two or three streams which were seen to run into the lake. The explorer was unable to go completely round it, but he could see it fully as he passed along its northern shore and yet could discover no signs of an outlet; the inhabitants declare that it has none: the swectuess of the water, however, is against there being no outlet and if so it mnst be somewhere to the south-east. The lake forms a portion of the boundary between Sikkim and the Lhása Territories. The Sikkim Territory lying to the east, that of Lhása to the west of the lake. Several very high snow peaks were visible from the lake to the east aud south.

On the 7th September he arrived at Ningzi, a Sikkim village which, though it has but 50 houses, boasts of a wonderful number of dogs, the explorer declaring he himself saw at least 200, and was certain that he never met with such a large proportion in a Tlibetan village where they are proverbially numerons.

On the 9th September he reached Chajong (or Tatápáni) lot springs where he took latitude and thermometer observations, the latter making it $1 \overline{5}, 000$ fect abore the sea. Four reservoirs, each about 30 feet in circumference and 3 feet deep, have been built to catch the water of these springs which appeared to be sulphurous and have a high reputation for their curative properties, being visited by numbers of people. The place swarmed with Tibetan (Hodgsonian) antelope which are quite tame being never disturbed, as they are considered to be dedicated to the deity of these hot spriugs. The next day the party encamped in a ravine and the day after crossed the Lagulmg-La pass, which has quantities of glacier ice close down to it, being it elf 16,200 feet above the sea. This pass forms the boundary between Sikkim and Lhasa, the march terminated at the village of Thak. On the 15 th September he passed the village and part of Sai Jong which is surromided by cultivation and has numerous other villages round nbout, encamped at Chota-L'apu or barcha vilhage on the banks of the Sai Jong stream, which comes from a great distance, rising in Siklim. The next day crossed the Gyaling monntains by a pass covered with snow, and renched the Baln Koti village of 20 loonses; this place has a good deal of cultivation, and numerous other villages are visible round about it. Passing thence through a level and well cultivated country, the explorer reached Shigatze on the 17 th of September.

The explorer paid the usual homage to the Láma of Tashi Lambo, making an offering of two rupees. He found the city of Sligatze in much the same state as described ly the chicf Pandit, he howerer heard of the serions rebellion which had been raised against the great Láma of Lhaisa in April 1871, during which hundreds of people were killed.

The explorer remained in Shigatze till the 29th of September, he then made his way south-westwards, towards the Dingri maidinu, resuming his route survey on the 30th September from a point he had previously visited. By evening he reached the village of Shinrang and the next day crossed the Shabki-Chu river which was $6 \stackrel{5}{5}$ paces wide and 4 feet decp, flowing down into the Sung-po (Brahmáputra), numbers of villages were seen on and off the road. The harvest was being reaped.

On the 2 nd of October he reached the great Shakia monastery (Gonpa) which is only second to that of Tashii Lambo. The explorer was unforturgately not alle to stop at Shakia to examine the place more closely. He says the Shakia monasfery is on a low spur, it is inhabited by about 2, 500 monk Lámás, ruled by a great Láma called Slakia-Gangma (king or above all others) ; he is looked upon as a deity. His Lamás are the only ones in this part of Tibet that are allowed to narry, they are called Dhukpás, other Lamás who are not allowed to marry being called Gutheis. The towin of Shakia lies at the foot of the moustery and is about half the size of the city of Shigatze. About filty of the shops in the town are kept by Niwars from Nepal, all the other shops are kept by Bhotias. There is a large amount of cultivation around Shakia though it is about 13,900 fect above the sea.

On the 3 rd of October the explorer crossed the Dongo-La fect above sea, and again got into ground drained by the Arun river, and on the 5 th Octoler reached the Chokuar village, on the left bank of the Phungtu or Dingri-Chu river, the great western branch of the Arua river.

Continuing westwards along the Dingri-Chu river, the explorer reached the Sakar-Chu river a branch of the Dingri-Chu. The Sakar-jong (fort) is about 8 miles north of the junction, and is the residence of a Llása magistrate. The Ghurkas in 18Jtadvauced as far as this point when they invaded Tibet.

On the 8th of October the explorer reached the town of Dingri which is generally known as Dingri Maidán from the large open plain in which it stands, it is also sometimes called Dingri-Ganga. The town has but 250 houses supplemented with teuts on occasions of fairs \&c., it is 13,900 feet above the sea.

Five miles above the junction of the Shakar-Chu river, the explorer crossed the DingriChu river by a wooden bridge 75 paces in length. Showing that even at that point this great eastern brauch of the Arun is a very large stream as might be expected from its draining the great Dingri table-land.

North and quitc close to the Dingri town stands the Dingri Khar (fort) on a low isolated liill. A high Chinese officer called a Daipon who is the chief military and civil officer, resides in the fort, he has a small garrison of Bhotia soldiers with but one gun.

From Dingri there is a very good road which runs north-east to Jong-ka-Jong and thence by Kirong town to Katmándu. Officials ne however the only persons who are allowed to travel by this route, traders and all others taking the one followed by the explorer to Nilam, \&c.

The explorer did not make any stay in Dingri, being afraid that be might be cut off from India by an early fall of snow, hic accordingly pushecl on as fast as he could. At first he passed through a wide all but level tract, and then getting into rougher ground reached the Thung-lung-1a on the Joth of October; he found the pass covered with old ice and snow, it being 18,460 feet above the sca.

On the 11th Octoler lie reached the town of Nilam 13,000 feet above the sea which has nbout 250 louses. It is ruled by a couple of Jongpons, the Llása Goverument sending two there so as to be a chicek on one another. Nilam being the first Tibetan town on the road from Nepal, is considered to demand extra vigilance and consequently the explorer and his party were very closely examined and their baggage was carcfully searched before they were allowed to go ou.

From Sligatze to the Thung-lung-La pass, the explorer had passed through a moderately level tract though at a very great clevatiou, but from the Thung-lung-La, where he crossed the Himalayan watershed he again entered on very rugged ground much more difficult than even that south of the Tipta-La (or Wallungsum pass).

Between Nilam and Listi Bhansir he followed the general course of the Bhotia-Kosi river, and though it is but some 25 miles direct distance between the two places, the explorer had to cross the Bhotia-Kosi river 15 times by means of 3 iron suspension, and 11 wooden bridges each of from 24 to 60 paces in length. At one place the river ran in a gigantic chasm the sides of which were so close to onc another, that a bridge of 24 paces was sutficient to span it. 'This was just below or south of the village of Choksum. Near this bridge the precipices were so impracticable that the path had of neccssity to be supported on iron pers let into the face of the rock. 'The path being formed by bars of iron and slabs of stone stretching from peg to peg and covered with earth. This extraordinary path is in no place more than 18 inches and often not more than nine incles in width, and is carried for more than one-third of a mile (775 paces) along the face of the cliff, at some 1,50$)$ feet above the river which could be seen roaring below in its narrow beed. The explorer who has seen much difficult ground in the IIimalayas, says he never in lis life met with any thing to equal this bit of path. It is of course quite impassalle for ponics or yáks, and but very few sheep and goats even go by it though it is constantly passed by men with loads.

There are several other smaller pieces of paths between Nilam and Listi Bhansár which are nearly as bad but they are fortunately not continuous.

From Listi Bhansár the explorer's route does not call for any special notice here being much the same as that in any other part of the mountains south of the Himalayan watershed, being rugged in the extreme for a considerable distance and then becoming casy in the valicys or Dáns. It may however he noted that the explorer crossed the Indrawati fecder of the Kosi which has 5 small ta ns near its source called Panch Pokri. The source is in the suowy mountains to the west as shown on the map.

The lower ground, though not at all noteworthy in itself, had never been surveyed in any way previonsly, the only land marks being the few great peaks in its neighbourhood that have been fixed from a distance by the Great Trigonometrical Survey; and I consequently consider the survey of it and other portions of the lower ground a very valuable addition to the geography of that part of the mountains.

On reference to the map it will be secn that by this exploration the position of the great limalayan watershed has been determined in three different places. In each case it proves to be far behind or north of the lofty peaks that are visible from Hindustiu, such as Mount Everest, Kanchinjinga, \&c.

The explorer it will be seen went completely round Mount Everest, bat lis route was so hemmed in by great mountains that he never got a view of Mount Everest itself; it seems to have been invariably hidelen by the subordinate peaks which are tolerably close to it. Possibly it may have been seen but never contimuously so as to be able to recognise it again and to fix it by bearings with a moderately long base. The Kanchinjinga and Jumu peaks were, however, seen from the west of Taplang Jong but only a short base could be secured. The cxplorer was much impressed boy Kanchinjinga (28,150 feet) ; it is known to the natives ncar Taplaug as Kumbh Karan Lanyir. The people south of the Himalayas, in Nepal, call all snowy mountains Langür, by which they mean the highest points. THiley call the peaks that have no snow Banjumy and the low ground under the said Banjung they call Phedi. The term IImalayas is not used by uneducated people who only talk of the snowy mountains as "Barfáni Langúr."

Neither the Bhotias nor the Gharkas seem to have specific names for remarkable peaks; the explorer asked all sorts of people but with the exception of the case of Kanchinjinga referred to above, he never got any name for a peak, though in a few cases they gave that of the nearest village.

Several of the other peaks fixed by the explorer were very lofty ones covered with perpetual show to a great distance below their summits, those north of Mount Everest and Kanchinjinga are perhaps the most interesting as being beyond the Himalayan watershed. One to the north of the road between Shakia aud Dingri, the explorer thouglit was very much loftier than any others.

The explorer's route survey may be said in a rough way to give us a general idea as to how the nomitain dramare runs between the Himalayan watershed, north-west of Kirong, and the point where Turner croswed it near Chumalári up to the Bráhmiputra, or Sang-po river on the north from west of Junglache to Shizatze. The route between Kirong, Jong-ki-Jong, and Dingri Maidin is still a desideratum as we are in the dark as to the size of the Palgucho lake, which however it now appears will lie somewhat to the sonth of the approximate position which I gave it in my map showing the chief Pandit's route to Lhása.

A glance at the map at once shows what a large river the Arm must be, the area it drains locing so very great. It is one of the few Ilimalayan rivers which has its sonrce beyond the Himalayan rauge ay seen from IIindustín, the others being the Indus, Sutlej and Karnáli. The length of the eastern and western upper sources is very remarkable, extenting on the one side to the north and cast of Kanchinjinga, and on the other to the north aud west of Mount Evercst.

In the route survey made by explorer No. 9 from Dirjiling to Shigatze, and from Shigatze by Shakia, Dingri Mailín, Nilam \&e., to Katmaindu, the valne of his pace has in the first instance been derivel from the diflerences of latitude between the various places at which star observations for latitude werc taken. A mean value of pace viz; $2.4 \overline{5}$ feet, derived from a mean of the valucs of cach section, was adopted, and this mean value was applicel to the number of pacess showing the differences of longitule for cach section and the valuc of the same in degrees and minutes was deluced therefrom in the usual way.

Taking the longitude of Dárjiling at $88^{\circ} 18^{\prime} 41^{\prime \prime}$ as determined by the triangulation of the G. 'T. Survey, and applying the differences of longitude as determined above, the longitude of Shigatze, by Tätápíni, Chota Tápu, \&c., vide map, i.e., by the most direct route would be 88° $46^{\prime \prime} 44^{\prime \prime}$.

Taking the longitude of Katmándu at $85^{\circ} 17^{\prime} 45^{\prime \prime}$ and applying the differences of longitule as above between it and Shigatze by Nilam, Dingri, Pil \&e., the longitude of Shigatze would be $88^{\circ} 3 z^{\prime} 4 \mathbf{J}^{\prime \prime}$.

On examining the map, however, it is at once apparent that the longitude of Shigatze, as determined by a route survey from Darjiling, is likely to be more reliable than that derived from Katmándu, because tlie difference of longitude, between Darjiling and Shigatze, is but $0^{\circ} 21^{\prime}$, while the difference between Katmaindu aur Shigatze, is $3^{\circ} 11^{\prime}$, or in other words the longitude of Shigatze would be very much more affected by an error in the value of the pace in the latter case than in the former. I have consequently decided upon using only the value as determined from Shigatze.

At page x of my report on the chief Pandit's exploration to Lhása, I explain that the longitude of Shigatze was determined by the route survey which Mr. Turner made during his journey to Shigatze, combined with the route of the Pandit, Shigatze was computed to be in longitude $88^{\circ} 48^{\prime}$, a very close agrcement with the value as determined above independently by Explorer No. 9 viz., $88^{\circ} 47^{\prime}$. It may consequently be concluded that the longitudes of Shigatze and of Lhasa which depends on Shigatze, as given in my first map, are very close approximations, and it is gratifying to find that my reliance on Thruer's route survey was not misplaced.

The Explorer's work has stood all the usual tests satisfactorily, the average value of his pace, 245 feet as determined from the differences in latitude, is about what might be expected from a man of his stature. His latitude observations agree very well inter se considering that he used but a small pocket sextant. His observations at Shigatze give much the same latitude as that derived from the chief Pandit's observations with a large sextant at that and other places.

His heights are the weakest part of his work, as owing to the larger thermometers originally sent with him having been broken, he was reduced to take his boiling point observations with a very small thermometer. The heights however arc probably fair approximations, and give a good general idea of the great elevation of the upper part of his ground.

His bearings to peaks on either side of his road were more numerous than usual, and on the whole he was fairly successful in fixing the more conspicuous.

The exploration with its bearings \&c., opens out the geography of nearly 30,000 square miles of what has litherto been in many portions terra-incognita and in others nearly so; the indications on our maps having been of course mostly conjectural. The exploration more especially elucidates the geography of the basin of the Arun or Arun-kosi river, the great eastern feeder, if not the main source of the great Kosi or Kosiki river, which drains the whole of castern Nepal. The courses of the upper feeders of the Arun have hitherto been a puzzle to geographers. The explorer's work also defines the course of the great western tributary of the Kosi river viz, the Bhotia Kosi of which we had previously no survey.

His route survey is 844 miles in length of which 550 miles may be said to be over entirely new ground, and the remainder (though close to a line aloug which one Europeon has travelled) had never been regularly surveyed before.

The explorer took latitude observations at 11 points upon which the work depends aud determined the height of 31 places. His work I think will prove a valuable addition to the Trans-Frontier geography of India.

T. G. MONTGOMERIE, Major R.E., Offg. Superintendent G. T. Survey of India, and in charge Trans-Himalayan Exploring Parties.

List of positions of the chief places as determined from the Route Survey of explorer No. 9 in Nepal and Great Tilet.

The longitude of Shigatze is derived from Dárjiling by the route survey passing through Tatípáni and Chota-Tŕpu. In the map accompanying this memorandum, $88^{\circ} 40^{\prime}$ was assumed to he the longitude, using a mean between the values derived from Katmandu and Shigatze. In future compilations the positions as given on the map, will require to be corrected to those given above.
Observations for Latitudes taken in Nepal and Great Tibet by explorer No．9．with a pocket sextant．

	$\begin{aligned} & \text { 号 } \\ & \text { 鞄 } \\ & \text { H } \\ & 5 \end{aligned}$		$\dot{+}$ $\stackrel{y}{+}$	\dot{Z} \dot{A}	$\begin{aligned} & \dot{\circ} \\ & \stackrel{+}{\dot{\theta}} \end{aligned}$	$\stackrel{\dot{H}}{\dot{\theta}}$	$\begin{gathered} \dot{\sharp} \\ \text { 苗 } \end{gathered}$	官	$\begin{aligned} & \dot{\circ} \\ & \text { 苗 } \end{aligned}$	$\stackrel{\dot{\#}}{\stackrel{+}{R}}$	$\stackrel{\dot{8}}{\stackrel{\circ}{R}}$	$\begin{aligned} & \dot{\#} \\ & \stackrel{\sharp}{\sharp} \end{aligned}$	$\begin{aligned} & \dot{\#} \\ & \stackrel{+}{\sharp} \end{aligned}$	$\stackrel{\dot{\sharp}}{\stackrel{\sharp}{\square}}$
		$\begin{aligned} & =\stackrel{\infty}{2} \\ & -10 \\ & -10 \\ & 0 \\ & \hline \end{aligned}$		$\begin{array}{r} 0 \\ 0 \\ 6 \\ 0 \\ 8 \\ 8 \\ \hline \end{array}$				$\stackrel{-}{7}$			\sim			
	$\begin{aligned} & =+ \\ & -1+ \\ & -1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ i 0 & 0 \\ H & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & \infty \\ & 1 \\ & \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { - } \\ & \text { B } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \infty \\ & i \\ & i 5 \\ & \underset{\sim 1}{\infty} \end{aligned}$	$$	$\begin{aligned} & \mathrm{N} \\ & \pm \\ & 8 \end{aligned}$	$\begin{aligned} & \dot{7} \\ & \stackrel{y}{7} \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 10 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { in } \\ & \text { n } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { of } \\ & \text { on } \\ & \text { on } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 7 \\ & 7 \\ & \text { a } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \infty \\ & \infty \end{aligned}$
	$\begin{array}{r} =0 \\ -1 \\ -1 \end{array}$	$=\quad=$	$=$	＝	$=$	$=$	$=$	$=$	$=$	＝	$=$	$=$	$=$	$=$
	$\begin{aligned} & =0 \\ & -\ddot{\sim} \\ & -\vec{H} \\ & 0 \text { el } \end{aligned}$	$\begin{array}{cc} \circ & 0 \\ \infty & \ddot{1} \\ \infty & \exists \\ \infty & 8 \end{array}$	$\begin{aligned} & \text { N } \\ & 10 \\ & 10 \end{aligned}$	$$	$\begin{aligned} & \overrightarrow{+} \\ & \vec{\infty} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{9}{9} \\ & -0 \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & -\mathbf{6} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { io } \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 응 } \\ & \text { 웅 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{9} \\ & \stackrel{4}{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \sim \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$
$\begin{aligned} & \text { 世 } \\ & \stackrel{y}{\circ} \end{aligned}$			$\begin{aligned} & \cdot \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \cdot \stackrel{0}{0} \\ & 0 \\ & Q \end{aligned}$	$\begin{aligned} & \text { 若 } \\ & \text { 问 } \end{aligned}$	$=$		$=$	$\begin{aligned} & \text { ri } \\ & 0 \\ & \text { n } \end{aligned}$		＋
	$\begin{aligned} & \text { 高 } \\ & \text { 品 } \\ & \text { Hif } \end{aligned}$	$=2$			$=$		$=$	$=$	$=$	$=$	$\begin{aligned} & \text { 品 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	$=$	－appied maida	$=$
ותחתויצ	$\begin{aligned} & * O \\ & E O \\ & -9 \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 & \ddots \end{array}$	－ － $\stackrel{9}{-}$	\circ － 9	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 － $\stackrel{\text { ay }}{\sim}$		$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 01 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & - \end{aligned}$	0 0 0	0 o $\#$	0 0 \cdots
	声	$=\frac{\pi}{9}$		合	$=$	高	$=$	$\stackrel{\rightharpoonup}{\Delta}$	菖	$=$	f	$=$	It	$=$
		$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$	$\stackrel{\dot{\circ}}{\stackrel{\circ}{\circ}}$	$=$	$=$	＝
	\rightarrow	∞	＊	4	ω	\cdots	∞	0	$\stackrel{\sim}{1}$	\Rightarrow	ศ	$\stackrel{3}{9}$	\＃゙	$\stackrel{10}{19}$

Observations for Latitudes taken in Nepal and Great Tibet.-(Continued.)

Norrs.-Lek signifies a pass.
Observations of the Boiling Point taken in Nepal and Great Tibet by Explorer No. 9.

	Month and date.		Watch time.	Station.	Tuerioneter.				Rimanse.	
			No.		$\begin{gathered} \text { Briling } \\ \text { Point. } \end{gathered}$	In Air.				
1	$\begin{gathered} 1871 \\ \text { August } \end{gathered}$	1		8 ¢.ल.	Dárjiling	7	$\stackrel{\circ}{0}$	64.2.5		Test wind.
9				Ditto . \ldots	10	2015		7,253	point in Dárijling 7170 by G. T. S.	
3				Phalialung Lek	10	19.2	55.2		No wind and rain	
	"	5	7 А.м.	Phalialung Lek...	10	1952		10,575	No wind and rain.	
4	"	\ldots	\ldots	Ditto	7	190.0	"		Ditto.	
5	"	7	6 f.r.	Suria Lek	7	198.0	63.0	9,100	South wind and rain.	
6	"	9	9 d.x.	Bank of Kabiri river ...	7	211.0	78.0	1,67\%	West wind.	
7	"	15	8 A.M.	Walungsamgola	10	1953	$60 \cdot 0$) $10-561$	No wind.	
8	"	\ldots	...	Ditto	7	196.0	"	$\}^{10,564}$	Ditto.	
9	"	16	1 p.ar.	Tipta-La	7	187.0	46.0	15,618	No wiud.	
10	"	28	10 s.m.	Tashirak village	7	188.0	47.0	15,025	North wind.	
11	Septembex	1	9 s.m.	Shara rillage	7	190.0	68.0	13,983	Ditto.	
12	"	4	3 p.m.	Lámádong thanka	7	1915	67.0	13,071	Ditto.	
13	"	6	7 s.m.	Tashichirang village at bank of 'Ghonto Dong Lake	7	188.5	48.0	14,734	East wind.	
14	"	12	...	Tatápáni or Chajoong	7	188.0	47.0	15,025	Ditto.	
15	"	14	11 A.M.	Lagulung-La	7	186.0	44.0	16,201	South wind.	
16	"	15	4 P.M.	Chota Tápu or Darcha village...	7	1890	64.0	14,5.58	E.ast wind.	

Observations of the Boiling Point taken in Nepal and Great Tibet by Explorer No. 9—(Continued).

m m m un m m	
家	
$\stackrel{\text { ¢ }}{4}$	
$\begin{aligned} & \text { 膏 } \\ & \stackrel{3}{e} \end{aligned}$	
lom_{0}	

Observations of the Boiling Point taken in Nepal and Great Tibet by Explorer No．9－（Continued）．

	Month and date．		Watch time．	Station．	Thermomater．				Remaigi．	
			No．		Boiling Point．	In Air．				
33	$\begin{gathered} 1872 . \\ \text { January } \end{gathered}$	26		0 P．M．	Chuwa Lek ．．．．．．．．．	7	－	$\begin{gathered} \circ \\ 44 \cdot 0 \end{gathered}$		Data incomplete．
34	＂	28	7 A．m．	Sudab village ．．．．．．．．．	7	208． 0	50.0	3，493	South wind．	
35	February	1	9 A．m．	Dhankuta bazar ．．．．．．	7	209＊ 0	52.0	2，927	Ditto．	
36	＂	3	7 4．M．	Barah chetr ．．．．．．．．．	7	．．．	55.0		West wind．	
37	＂	7	7 p．M．	Naría bazar ．．．．．．．．．	7	．．．	55.0		South wind．	
33	June	19	0 P．M．	Masúri G．T．Surrey office ．．．	7	201．75	75.0			
39	August	12	112 $\frac{1}{2}$ A．M．	Ditto．．．．．．．．．	7	202.00	70.5		Mean of six．Cloudy and calm．	

[^5]Route Survey from Dárjiling (Thánah) to Shigatze (Market Place).

No. of Station.	Name of Station.		Bearing to forward etntion.	Distance in puces to forward station.	Rrmatis.
			\bigcirc		
1	Dárjiling	.	29+30	13963	
2			27530	4152	
3	Kaiuchnlia	.	$33+30$	7279	Thánah.
4		\cdots	2850	2350	
5	Hamaphong	\cdots	28130	10340	Village.
6		\cdots	2920	15100	
8	Phalialung Lek	\cdots	274 240	2871 8100	On boundary between British and
		.			Nepal 'l'crritories.
10			2850	13010	
10	Nablang	\cdots	297 ○	9580	Village.
11	Suriablanjan	\cdots	32030	5425	Hill.
12	Suria Lek	\cdots	299 ○	7085	
13	Slikírpur	.	29030	1.5140	Village.
14.	Kabiri	.	340 -	4566	Stream.
15	Phuwa Village	.	3110	13850	200) yards from.
16	Taplang Jong	..	1730	16807	Village.
17		.	42 o	6608	
18			6630	38.59	
19	Tabkia Thok	.	350	11150	Villhge.
20		.	66 o	17097	
21	Ebangkhola	.	301 -	7270	Stream.
22	Tambru	\cdots	1180	8511	River, on bank of.
23	..	\cdots	1830	11800	
24	\cdots	\cdots	320 -	8010	
25	.	..	3350	18001	
26		.	360 -	5938	
27	Tashirak Chu	\cdots	210	10200	Stream, on left bank of.
28 29		\cdots	34.50	12100	
29 30	Nila-La	.	20 O	9910	Hill, on top of.
30 31 3	Shara	.	4030	34030	Village.
32	.	\cdots	6530	48 28.50	
33	Tashichirang	.	270 -	2288	Village.
$3+$	Chomto Dong	.	2230	2.500	Lake, ou bank of.
35		\cdots	67 \%	21225	
36	Nangii	.	358	6065	Village. Latitude obsersed.
37 38	Chajong	\cdots	6730 750	54.50 $668+$	Latitude obserred.
38 39	Tinki-La	\cdots	75 35 35	6084 20104	Hill, on top of.
40	Lagulung-La	.	34.50	116;0	Hill. Boundary of Sikkim \& Lhasa.
41			1630	18194	
42	Ruksum	.	\bigcirc	89.55	Stream, on bank of.
43		.	$53 \bigcirc$	7715	
44	Cloota Tápu	.	26 O	8010	Village. Latitude observed.
45	Gyaling-La	.	6730 2530	5000 6393	Ifill, ou top of.
47	\cdots		33, 30	9600	
48		\cdots	30 -	$16 \mathrm{Ky} \mathrm{S}^{6}$	
49		\cdots	333°	12000	
50	Shigatze	\cdots	\ldots	City. The Market place. Latitude observed.

From Changma (Tillage near Shigatze) to Katmandu.

\begin{tabular}{|c|c|c|c|c|c|}
\hline No. of Station. \& Nume of Station. \& \& Benring to forward station. \& Distance in paces to forward atation. \& Reysifa.

\hline \& \& \& - \& \&

\hline 1 \& Changma
.. \& -• \& 25030 \& 14765 \& Village-10996 paces from station No. 48 on the line from No. 48 to No. 49 of foregoing Numbering.

\hline 2 \& \& .. \& 25230 \& 10850 \&

\hline 3 \& \& \& 2350 \& 4300 \&

\hline 4 \& Nangra \& . \& 2250 \& 15125 \& Hill, on top of.

\hline 5 \& Sab-Chu \& . \& 280 - \& 1280 \& River, on right bank of.

\hline 6 \& Linghochen \& . \& 17.5 0 \& 6800 \& Temple.

\hline 7 \& Puksum \& . \& 2350 \& 11383 \& Stream, on bank of.

\hline 8 \& \& \& 212 ○ \& 12095 \&

\hline 9 \& Cliong-La \& -. \& 266 O \& 13790 \& Hill.

\hline 10 \& \& \& 200 o \& 2.500 \&

\hline 11 \& Ata-La \& \cdots \& 27030 \& 113.50 \& Hill.

\hline 12 \& .. \& . . \& 19430 \& 6.500 \&

\hline 13 \& \& \cdots \& $22+30$ \& 7.500 \&

\hline 14 \& Dongo-La \& \ldots \& 212 o \& 11100 \& Hill.

\hline 15 \& Sinas-Chu \& . \& 18330 \& 19880 \& Stream, on bank of.

\hline 16 \& Pil village \& \cdots \& 206 - \& 13300 \& Latitude observed.

\hline 17 \& .. \& . \& 230 - \& 9118 \&

\hline 18 \& \cdots \& \cdots \& 21530 \& 14712 \&

\hline 19 \& \& \& 280 \& 13000 \&

\hline 20 \& Chaiokor \& \cdots \& 29.530 \& 30760 \& Village.

\hline 21 \& Plungrtu \& . \& 2670 \& 7600 \& liver, on bank of.

\hline 22 \& Ditto \& \cdots \& 2750 \& 6500 \& Do.

\hline 23 \& Ditto \& \cdots \& 270 O \& 10294 \& Do.

\hline 24 \& .. \& . . \& 2500 \& 9690 \&

\hline 25 \& \& \cdots \& 2650 \& 17400 \&

\hline 26 \& Chakor \& \cdots \& 26030 \& 25100 \& Village.

\hline 27 \& \& . \& 27930 \& 11135 \&

\hline 28 \& Dingri Jong \& -• \& 2320 \& 32016 \& Town, at entrance to. Latitude observed.

\hline 29 \& \& . \& 294 O \& 6,500 \&

\hline 30 \& Thungla \& . . \& 26930 \& 17181 \& Hill.

\hline 31 \& .. \& .- \& 2250 \& 8500 \&

\hline 32 \& \& - \& 2040 \& 7870 \&

\hline 33 \& Palgu \& . \& 23.530 \& 40.50 \& Stream, on bank of.

\hline 34 \& \& . . \& 2050 \& 5^{820} \&

\hline 35 \& Thakinling \& . \& 19.530 \& 21921 \& Village.

\hline 36 \& Nilam Jong \& . \& 2100 \& 4800 \& Do. Latitude observed.

\hline 37 \& Kosi River \& . \& J 35 - \& 5170 \& On right bauk of.

\hline 38
39 \& Ditto \& \cdots \& 19030 \& 3200 \& Do.

\hline 39
40 \& Ditto
Choksum \& \cdots \& 176

184

180 \& 3.540 \& On Bridge.

\hline 40
41 \& Choksum \& . \& 18430 \& 2870 \& Village.

\hline 41 \& \cdots \& \cdots \& 19530 \& 12197
2775 \&

\hline 43 \& \cdots \& \cdots \& 2090 \& 2775
13017 \&

\hline 44 \& . \& . . \& 207 - \& 4045 \&

\hline 45 \& \& \cdot \& 2150 \& 6182 \&

\hline 46 \& Kanglank \& \cdots \& 2300 \& 3^{800} \& Hill, on top of,

\hline 47 \& Listi \& . \& 2520 \& 3325 \& Do.

\hline 48
49 \& Listi Village \& \cdots \& 19030 \& 8725 \&

\hline 49
50 \& \& \cdots \& 2150 \& 2600 \&

\hline 50 \& Bisinkhar Lek \& \cdots \& 2553° \& 4942 \&

\hline
\end{tabular}

From Changma (Village near Shigatze) to Katmandu-(Continued).

No. of Station	Namo of Statiou,		Benring to forward station.	Distanco in paces to forward atation.	Rrmanig.
			- ,		
51		.	24030	5480	
52	Balefi	-	200	5470	Stream, on bank of.
53		\cdots	24830	3210	
54	Banspati	.	24130	3600	Village.
55	Choutra	.	22830	3425	Do.
56		\cdots	23130	5900	
57	Ghetar	\cdots	27130	3360	Village.
58	Sipa	\cdots	24130	4065	Do.
59	Jherkola	.	26030	3826	Stream, on bank of.
60	Dhankola	.	27130	7100	Do.
61		\cdots	251	9310	
62	Chautaria Lek	\cdots	226 ○	2300	Hill, on top of.
63	..	.	22130	3890	
64		\cdots	270 ○	5635	
65	Kalitar	.	25230	8210	
66	Chabeli	.	2.250	6170	Do.
67	Katmándu	.			At Indar Chaok (centre of city.)

Fron Katmándu (Asan Tol) to Taplang Jong (Station No. 16 of Route from Darjiling to Shigatze).

1	Katmíndu	..	112	0	7575	Asan Tol. Latitude observed on this line, 1025 paces from starting point.
2	Dimi Village	.	110	\bigcirc	2250	
3		.	106	\bigcirc	3710	
4		.	115	0	6300	
5	Bist Village	\cdots	109	0	2335	
6	Burapa "	\cdots	129	\bigcirc	4060	
7		.	113	30	5660	
8	Nabna Lek	.	126	30	4700	
9	Dabchia Village	.	122	0	3230	
10	.	.	118	30	4850	
11	.	.	66	30	2500	
12	.	.	123	30	$4+15$	
13	.	..	135	30	6825	
14	.	. .	112	-	5200	
15	.	. .	110	0	4910	
16		.	127	\bigcirc	7800	
17	Jhangajholi	.	105	\bigcirc	4786	Village.
18	Mulkotar	.	127	30	6400	Do.
19	74	-	2415	
20		.	144	\bigcirc	5500	
2 i	Tribeni	.	92	\bigcirc	7200	Junction of two streams.
22	Bedana	\cdots	110	\bigcirc	3950	Village.
23		.	100	0	5700	
2.1	Hilia Village	.	32	0	3000	
25		\cdots	35	\bigcirc	3500	
26		.	112	\bigcirc	2000	
27		\cdots	60	\bigcirc	1900	
28	-	\cdots	93		4000	

Trom Katmándu (Asan Tol) to Taplang Jong (Station No. 16 of Route from Dárjiling to Shigatze.)

No. of Station.	Name of Station.		Bearing to forward station.	Distance in paces to for. ward station.	
			01		
29		.	1030	6190	
30	Kuwapáni	\cdots	720	4770	Village.
31	..	\cdots	12230	4500	
32	\cdots	.	14930	3900	
33		.	1070	11000	
34.	Kanjia Lek	.	60 o	6400	
35	Kanjia Village	.	87 o	6615	
36	Bungnang	.	950	3400	
37	Gahatiatar	.	4230	2200	Village.
38	..	.	12630	3715	
39		-	95 ○	10146	
40	Charkhu	\cdots	7430	58\%	Village.
41		\cdots	11730	5481	
42	Dudh-kosi	.	55 ○	6225	River, on bank of.
4.3	Rakola Pasal	.	120 O	9680	Shop.
44.	Kumdia Lek	.	45 -	4726	
4.5	Do.	-	1170	6500	
46	Nerpa Village	.	13630	5790 8500	
47	Dorpa \quad	\cdots	8530	8500	Village 5600 paces from Dorpa on line from Dorpa to Station 48.
48	Lamakhu	\cdots	100	7025	Village.
49	Chakuwa Lek	.	7730	5900	Hill.
50	Dilpa Village	\cdots	6130	4400	
51		.	14030	10780	
52	Bhojpur. Village	\cdots	820	6597	
53	. .	\cdots	37 O	4600	
54		\cdots	4030	5210	
55	Soria Village	\cdots	57 48	5425 4600	
56		\cdots	48 ○	4600	Latitude observed on line 56 to 57 at Village Amtia, 2500 paces from station 56 towards 57.
57	Arun River	\cdots	74 ○	7290	On bank of.
58	Chainpur Lek	.	55 ○	5700	Hill.
59	Do. Village	\cdots	7730	8590 10610	
60		\cdots	92 6530	10610 6400	Pati. Small Bazar and Dharmsála.
61	Nundhakia	\cdots	6530 110	6400 4200	
63	Milkia Lek	.	8730	4410	
64	Do.	.	70	8625	
65		\cdots	6230	13645	Same as Station No. 16 of Route
66	Taplang Jong	\cdots			Same as Station No. 16 of Route from Dárjiling to Shigatze.

16 -b $^{\text {b }}$
From Kabiri, Dharmsala (Station No. 14 of Route from Dajjiling to Shigatze) to Naria Bazar (Kotwáli).

No. of Station.	Namo of Station.		Braring to lurwned Station.	Distnnce in paces to forwarl station	Reimigig.
			-		
1	Kabiri	.	1250	3900	
2	Tamm River	.	19930	7310	On left bank of.
3	Chua Pahár	.	26730	7600	
4	Sambua	.	21030	5300	Villrge.
5	Tukma	.	1350	2700	Hill.
6	Do.	.	2160	7520	
7	Majhwa	.	2100	4525	
8		.	2010	$9+70$	
9	Kalamati	.	2250	4597	Hill.
10		-	1720	2000	
11	Sudab Hill	.	2250	3370	
12	Do.	.	24 I O	3800	
13	Telia khola	.	20130	7820	Stream.
14	Hamjung Hill	-	24930	8355	
15	Dhankuta	.	187 O	6660	Bazar, Latitude observed.
16	-	.	2460	5670	
17	Tamru River	.	21.0	8860	On bank of.
18		\cdots	24150	4370	
19	Dhírapíni	.	2720	6040	Village.
20	Barah Chetr	.	1910	8466	Worslipping place.
21	Chatria	.	2150	23400	Thánalı.
22	Megjin	-	177 -	23300	Ka TLúuah.
23	Chapri Village	..	2750	4100	
24		\cdots	20630	11476 8170	
25	Kotia Village	\cdots	22030	8170	
26	'I hakia Village	.	2610	5210	
27	Sikrata "	.	2.510	5676 10085	
28 29	Dlıánsia Village		$\begin{array}{ll}272 & 0 \\ 267 & 0\end{array}$	10085 6650	
80	Aráha ,	. .	2510	4270	
81	Naria	..	,	,	Bazar, Thanalı. Latitude observed.

GENERAL REPORT

on the operations
of the

GREAT TRIGONOMETRICAL SURVEY OF INDIA,

j) URING

1871-72,

Prepared for submission to the Government of India.

BY
MAJOR T. G. MONTGOMERIE, R.E., F.R.S., \&C., OFFG. SUPERINTENDENT G. T. SURVEY.

printed at the office of the superintendent c. t. survey.
M. J. OCONNOR.

[^0]: Defra Dun, ?
 November 1872.

[^1]: (2.) In compliance with Departmental Order No. 39, dated 31st August 1871, I assumed charge of the Bider Longitudinal Series, G. 'T. Survey, on the 6th November and the party took the field on the 20th December 1871.
 (3.) During the recess of 1871 the party was engaged in the following computations which, owing to the continued illness of Messrs. Bell and Wrixon, progressed very slowly, -
 Spheroidal Excesses computed in duplicate 5
 Weights and Reciprocals of Observed Angles in duplicate 17
 Computed angular corrections to Pentagon in duplicate 1
 Number of Principal Triangles computed in duplicate 5
 Number of deductions Latitudes, Longitudes and Azimuths of Principal Stations in duplicate 10
 Number of deductions of Heights of Principal Stations in duplicate 10
 Number of Secondary I'riangles determining 14 intersected points in duplicate 26
 Number of Latitudes, Longitudes and Azimuths of Secondary Stations in duplicate 28
 Number of Heights of Secondary Stations in duplicate 1
 The Preliminary Charts of the Bider Longitudinal Series for seasons 1869-70 and 1870-71 2

[^2]: * I give this rule in full, beenuse it acems to he suitable for ndoption generally-in azimuthal as well as rerticul obsersations. It increases the number of mieroscope readings by 1 in 5 (or le's if relared) -but removes all possibility of orerluoking an erroncous run.
 t A full rejort fus communicated at tho time. The injurod part has, boen since re-examined and nearly all truce: removed.

[^3]: + Cast of maintenance of Meteorological Stations.-This seema the proper place to etute that the obserratory at Dehra coete the Mefeorologiral Jepartment nothing; both the ratublishnent ond the inatrimenta belong to the Great Triponometrical Survey, (Report for 1871 on Moieorological obsercotions N. W. Provinces, by Murray Thomson Esq., M.D., F.R.S., S.)

[^4]: \dagger Mr. Willis volnutecred his services for the occusion and performed his put with erery desirable skill and accuracy.

[^5]: Nors．－The preceding beights above $S_{e s}$ level are computed differentiolly from height of Masiri observatory taken at 6937 feet to which the oberver＇s boiling point $201 \cdot 83^{\circ}$ and temperature
 72.75° have been ossumed as corresponding．

